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Abstract

The regenerative receiver is probably one of the most common TRF (Tuned Radio
Frequency) AM radio receiver designs. While it is primarily intended to be operated
below the onset of sustained local oscillations it is also frequently operated in “oscillat-
ing mode”. Although mostly used to demodulate single sideband (SSB) transmissions
the regenerative receiver in oscillating mode continues to be able to receive amplitude
modulated signals1 and there are often conflicting reports of whether oscillating mode
provides better selectivity and sensitivity.

In a previous paper [1] a simple linear feedback model to study the basic behavior of
regenerative receivers in non-oscillating mode for small input signals has been intro-
duced. This model is now augmented by replacing the simple linear feedback device by
a real-time limited feedback device to account for the fact that the maximum amount
of feedback the device can deliver into the tuned circuit is limited. This will enable
us to numerically study the circuit’s behavior for large input signals in non-oscillating
mode and also investigate it’s oscillating mode.

For large input signals in non-oscillating mode, it is shown that the output signal is
subject to an amplitude compression effect that also causes the large-signal bandwidth
of the frequency response curve to be significantly larger then the small signal band-
width. Next, the oscillating mode is studied, starting with the two basic phenomena
injection locking and injection pulling. In particular, it is shown how injection pulling
leads to beat frequencies much lower than the difference of the resonant frequency of
the tank and the frequency of the input signal. It is shown that amplitude compression
and a resulting increase in bandwidth also occur in oscillating mode. Most important,
it is shown that when receiving amplitude modulated signals in oscillating mode, the
carrier of the amplitude modulated signal is increased significantly. In combination
with certain properties of the envelope detector, this “carrier boost” is able to signifi-
cantly enhance the selectivity of the receiver without having an adverse effect on audio
frequency bandwidth.

1More precisely: Double sideband modulation with carrier present.
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A Simple Bounded And Nonlinear Feedback Model

The generic linear feedback model that was introduced in [1] serves it’s purpose
quite well for studying the small signal behavior of a regenerative receiver in
regular, i.e. non-oscillating mode. However, due to it’s linear and unbounded
nature, it can not be used to describe the large signal behavior or even the
oscillating state of a regenerative receiver. In order to be able to do so, we
need to augment this model and introduce bounds that will limit the amount of
feedback provided to the lossy LC tank for large voltages. There are basically
two ways to achieve this. First, the feedback device can be subject to some
form of automatic gain control (AGC) with it’s gain determined by the average
voltage amplitude in the tank, taken over several cycles. This will typically be
the case with vacuum tube regenerative circuits using grid leak detection where
an increasing voltage amplitude in the tank will push the quiescent of the tube
into regions with reduced transconductance. Mathematically, these AGC based
feedback devices are difficult to treat since one will have to deal with combined
integral and differential equations. The second option, and the method that we
will pursue in this paper, is to introduce real time bounds into the feedback device
by virtue of a bounded nonlinear feedback function.

Let us start with the schematic of our generic regenerative circuit as introduced
in [1] and shown in figure 1.
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Figure 1: Generic regenerative circuit
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Feedback into the main tank is delivered by a voltage controlled current source
driving a feedback current If through the “tickler” coil Lf that is coupled induc-
tively to the main tank coil L. The degree of inductive coupling is given by the
coupling factor k, that is related to the mutual inductance M of the two coils
[3] by M = k

√
LLf . The control voltage for the current source is the voltage

UC at the capacitor C of the main tank. We shall also refer to this voltage as
the output voltage of the main tank. As usual, the losses in the main tank are
modeled by a series loss resistance R and a driving voltage Ud(t) is applied [1].

Since the feedback current If needs to stay within reasonable limits, the function
If = If(UC) needs to have upper and lower bounds. Also, since our goal is
to augment our circuit model so that is contains the original linear feedback
model as a small signal approximation we demand that for small voltages UC, the
function If = If(UC) be approximately linear. These requirements are nicely met
by an arctangent function of the form

If(UC) = b1 · arctan(b2UC) (1)

that is depicted in figure 2. Here, b1 and b2 are parameters whose physical
meaning will become apparent soon.

Figure 2: Feedback current If = If(UC)

Since−π/2 < arctan(x) < π/2, the bounds for the feedback current are−b1π/2 <
If < b1π/2 which immediately yields b1 for any given feedback current limit.
Also, from the Taylor series expansion of (1) around UC = 0 it follows that
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If(UC) ≈ b1b2 ·UC for sufficiently small values of UC (small signal approximation).
Obviously, the small signal transconductance of the feedback current source is
β = b1b2. Since b1 is given by the feedback current limit, we can use b2 to set
the small signal transconductance of the feedback device. A practical example of
such a real-time feedback device is a high input impedance differential amplifier
followed by a voltage controlled current source.

Let us now derive the differential equation governing the circuit. We shall start
with the feedback voltage Uf induced by the feedback coil into the main tank coil.
Using the mutual inductance M between these two coils, we get [3]

Uf(t) = −Mİf(t) (2)

Also, applying Kirchhoff’s loop rule [4] to the main tank leads to2

UL(t) + UR(t) + UC(t) = Ud(t) (3)

Since the voltage UC(t) at the capacitor C and the current I(t) in the main tank
are connected by I(t) = CU̇C(t), using Uf from equation (2) along with equation
(1) in equation (3) and bearing in mind that UL(t) = Lİ(t) + Uf(t) then yields

LCÜC(t)−M d

dt

(
b1 arctan (b2UC(t))

)
+RCU̇C(t) + UC(t) = Ud(t)

from which we immediately obtain

1

ω2
0

ÜC(t) + C ·
(
R−

1
C
Mb1b2

1 + (b2UC(t))2

)
U̇C(t) + UC(t) = Ud(t) (4)

where ω0 = 1/
√
LC is the resonant frequency of the main tank. Similar to the

linear case [1], we can identify the virtual loss resistance in the above equation
as

R̃ = R−
1
C
Mb1b2

1 + (b2UC(t))2
(5)

As expected, the virtual loss resistance in the nonlinear case is no longer a con-
stant but depends explicitly on the output voltage UC(t) of the main tank. How-
ever, in the small signal case UC � 1/b2 the above nonlinear differential equation
(4) is reduced to a linear differential equation with a constant virtual loss resis-
tance of

R̃ = R− 1

C
Mb1b2 (6)

2bear in mind that the voltage loop must follow the (arbitrarily defined) positive direction
of the current in the loop
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In order to be able to obtain numeric solutions for the nonlinear differential
equation (4) we need to choose reasonable values for the parameters involved.
The parameters that will not require being changed in the course of this paper
are set as follows: The capacitance in the main tank is set to C = 100pF and a
resonant frequency of ω0 = 2πf0 with f0 = 1MHz is assumed3. The physical loss
resistance is set to R = 30Ω, leading to a physical Q-factor [5] of Q ≈ 53 in the
main tank. The mutual inductance between the feedback coil and the main tank
coil shall be M = 2µH. The feedback parameter b1 is set to b1 = 3mA, limiting
the feedback current according to equation (1) to ±3mA · π/2 ≈ ±4.7mA.

Non-oscillating Operation

Before advancing to the study of the oscillating mode let us spend some time to
analyze the circuit in it’s regular non-oscillating mode for signals that no longer
qualify as “small”. Let us take a closer look at the virtual loss resistance as
given by equation (5) that in the nonlinear case depends explicitly on the output
voltage UC. In order to be safely inside the non-oscillating region we require
R̃ > 0 for all possible values of UC. In this section, this is ensured by setting
b2 = 0.4, resulting in a small signal virtual loss resistance of R̃ = 6Ω according
to equation (6), respectively a virtual Q-factor of Q ≈ 265. Obviously, R̃ reaches
it’s minimum for UC = 0 and increases as |UC| increases. Hence, for small signals
UC(t) the “average” value of R̃ and therefore the average damping is less then
the average damping for larger signals.

Amplitude Compression

This behavior creates a real-time amplitude compression effect on the output
voltage UC, very similar to the use of a compressor in audio signal processing.
In other words, if the amplitude of the driving voltage Ud is doubled, the output
amplitude will be less than double. This behavior can also nicely be shown
by numerically solving our differential equation (4) for different driving voltage
amplitudes and plotting the output voltage amplitude versus the driving voltage
amplitude as has been done in figure 3 for a driving frequency of 1MHz which is
the resonant frequency of the main tank.

It immediately follows from equation (5) that amplitude compression is more
pronounced in the case of stronger feedback (|b2| larger). Hence, a regenerative
circuit having a main tank with a high physical Q-factor that requires less feed-
back to reach the desired virtual Q-factor will exhibit a more favorable large
signal behavior.

3The equations governing the circuit are written in such a form that the inductance L never
appears explicitly.
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Figure 3: Amplitude compression

Bandwidth Widening

One immediate consequence that arises from the amplitude compression effect is
an increased bandwidth of the frequency response curve of the main tank. This
simply arises because the frequency response curve is subjected to compression
on the output amplitude axis while leaving the frequency axis as it is, resulting
in a less pronounced drop towards more off-resonant frequencies. To illustrate
this behavior, the frequency response curve has been computed numerically from
differential equation (4) for different driving voltage amplitudes and plotted in
figure 4.

For comparison, the bandwidth for small input signals where the linear approxi-
mation (6) is valid is [5] B = f0/Q = 1MHz/265 = 3.77kHz

The Oscillating State

Usually, the user of a regenerative receiver set is strongly reminded to avoid the
oscillating state of the circuit. This is because the oscillations can cause inter-
ference in other nearby receivers. In particular, the beat between the frequency
of the oscillator and a neighboring carrier of a radio station will be heard as the
familiar whistle tone not only on the oscillating receiver but on nearby receivers
as well.
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Figure 4: Frequency response curve for different driving voltage amplitudes

However, the oscillating state of a regenerative circuit can be used to demodulate
radio signals with suppressed carrier modulation, most notably single sideband
(SSB) transmissions. Also, demodulation of regular amplitude modulated signals
is still possible in the oscillating state and there are often conflicting reports
by vintage radio enthusiasts whether the oscillating state or the non-oscillating
state offers better reception. We shall delve into this question a little later in this
section. First however, we need to discuss the important issue of injection pulling
and injection locking of oscillators by external signals that is fundamental to the
oscillating state of regenerative receivers.

Injection Pulling And Injection Locking

If an external signal is applied to an otherwise free-running oscillator, the external
signal can under certain conditions synchronize the oscillator so that it becomes
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not only frequency- but also phase locked with the external signal. For LC
oscillators, the conditions under which an external (injected) sinusoidal voltage
can synchronize the oscillator have been theoretically examined by R. Adler in
the mid 1940s [6]. Adler derived a differential equation for the time dependence
of the phase shift between the injected voltage and the output voltage of the
oscillator. In the injection locked state where there is a time independent phase
angle between the injected voltage and the output voltage of the oscillator this
differential equation reduces to

sin(δ) = 2Q
∆f

f0

Ûosc

Ûinj

(7)

where δ is the phase angle between the injected voltage and the output voltage
of the oscillator, Q is the physical Q-factor of the LC tank, f0 is the free-running
frequency of the oscillator, ∆f is the difference between f0 and the frequency
of the injected voltage, Ûosc is the amplitude of the free-running oscillations and
Ûinj is the amplitude of the injected voltage. Obviously, the above equation also
implies the injection locking conditions since −1 ≤ sin(δ) ≤ 1.

It should however be stressed that in our circuit model the injection voltage Uinj

is not the driving voltage Ud but the part of the output voltage UC that occurs
at the input of the feedback device due to the presence of the driving voltage Ud.
Fortunately, deducing Uinj from Ud is relatively simple. If we take another look
at our circuit model, we see that the nonlinearity occurs solely in the feedback
device, i.e. If = If(UC) and therefore also Uf = Uf(UC) are nonlinear functions,
while the main tank itself is linear. Hence, for all voltages and currents occurring
in the main tank, the principle of linear superposition holds true. In particular,
the output voltage UC(t) of the main tank can formally be written as the sum
of the output voltage of the tank driven by Uf(t) while Ud ≡ 0 and the output
voltage of the tank driven by Ud(t) while Uf ≡ 0. Obviously, the latter is the
injection voltage Uinj(t) we are looking for.

Since we are only interested in a rough estimate of the injection locking range and
the locking phase shift δ, we can make the following approximation: Since the
injection locking range is typically much smaller than the -3dB bandwidth of the
LC tank, we can assume that for injection locking to occur, the driving voltage
frequency needs to be well inside the -3dB range around the resonant frequency
of the tank4. The amplitude Ûinj of the injection voltage function Uinj(t) is then

roughly [7] Ûinj ≈ Q · Ûd where Q is the physical5 Q-factor of the tank and Ûd is
the amplitude of the driving voltage function Ud(t). Using this result in equation
(7) then yields

4determining in good approximation the frequency of the free-running oscillations
5since Ûinj needs to be calculated with Uf ≡ 0
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sin(δ) = 2
∆f

f0

Ûosc

Ûd

(8)

Let us now use our circuit model, respectively differential equation (4) to nu-
merically explore injection locking. For fixed values of Q, f0, Ûosc and Ûd, the
occurrence of injection locking is entirely a matter of the distance ∆f between
the free-running frequency of the oscillator and the frequency of the driving volt-
age. Let us now set b2 = 0.6, resulting in R̃ = −6Ω in the small signal linear
approximation to ensure a quick startup of the oscillations. Numerically, we find
the free-running amplitude of the oscillations to be Ûosc = 1.633Vp. Let us now

apply a driving voltage of Ûd = 3mV whose frequency is lowered from f0+1300Hz
to f0 + 1100Hz and then finally to f0 + 1000Hz. The resulting envelope curves of
the oscillator output voltage UC(t) are shown in figure 5.

Figure 5: Beat frequency, injection pulling and injection locking
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At a driving frequency of f = f0 + 1300Hz we can clearly see a distorted beat
whose frequency can be determined to be 935Hz which is below a beat frequency
of 1300Hz that one might have expected. The reason for this is that even before
injection locking occurs, the injected signal pulls the frequency of the oscillator
towards it’s own frequency. This effect is known as injection pulling [9]. As
the frequency of the driving voltage is getting closer to the locking range, the
pulling increases and for f = f0 + 1100Hz the result is a beat frequency of
526Hz which is about half the beat frequency that would occur without injection
pulling of the oscillator. Finally, as the frequency of the driving voltage enters
the locking range, the beat disappears as the oscillator is now injection locked
to the driving voltage. A closer numerical analysis reveals that locking occurs
somewhere around f = f0 + 1050Hz which is in quite good agreement with the
rough estimate of f0 + 919Hz obtained from equation (8).

Carrier Boost And Enhanced Selectivity

The basic question that arises at this point is how the regenerative receiver be-
haves in the oscillating state when injection locking of the oscillations to the
carrier frequency of an AM radio station has occurred. Obviously, in the case of
injection locking the original carrier of the received AM signal in the main tank is
replaced by the synchronized, locally generated oscillations6. These oscillations
will typically have a much larger amplitude than the original carrier and will also
be phase shifted against it, with the approximate phase shift given by equation
(8). Since any noticeable phase shift of the locally generated oscillations towards
the original carrier and therefore the upper and lower sidebands of the AM sig-
nal will cause distortions and partial mutual cancellations of the sidebands [8],
further fine-tuning of the receiver’s frequency control must be performed to min-
imize the phase shift of the locally generated oscillations. Hence, even with the
oscillating regenerative receiver there is no “snap-to-station” tuning feature once
the injection locking range is reached7.

Let us therefore assume that the frequency control of the oscillating regenerative
receiver has been tuned to not only reach the locking range but also to minimize
the phase shift of the locally generated oscillations with respect to the original
carrier. In this case the replacement of the original carrier by the locally generated
oscillations will lead to a carrier boost effect where the median amplitude of the
amplitude modulated output voltage of the main tank is drastically increased.
However, since the sidebands of the AM signal remain untouched, the modulation

6In a true multiplicative homodyne receiver, the carrier itself is retained and fed into a
multiplicative frequency mixing stage along with the output of the local oscillator.

7A more advanced homodyne receiver using a phase locked loop oscillator will, however, have
this snap-to-station feature for the synchronization range where the local oscillator is locked to
a phase shift of close to zero with the carrier.
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depth will decrease accordingly. Let us look at an amplitude modulated RF signal
of the form

s(t) = (1 +m cos (ωAF t)) · (cos(ωt))

where the amplitude of the RF carrier has been normalized to 1V. In the above
equation, ω is the frequency of the RF carrier, ωAF is the frequency of a cosine-
shaped audio signal8 and 0 ≤ m ≤ 1 is the modulation depth. Using basic
trigonometric identities [10], this can be written as

s(t) = cos(ωt) +
1

2
m (cos ((ω − ωAF )t) + cos ((ω + ωAF )t))

from which the carrier as well as the upper and lower sidebands are readily
identified. If we boost the carrier by a factor of µ > 0 while leaving the sidebands
untouched, i.e.

s(t) = µ cos(ωt) +
1

2
m (cos ((ω − ωAF )t) + cos ((ω + ωAF )t)) (9)

we finally end up with [10]

s(t) = µ

[(
1 +

m

µ
cos(ωAF t)

)
· cos(ωt)

]
(10)

Obviously, boosting only the carrier by a factor of µ results in the median ampli-
tude being increased by this factor, while simultaneously the modulation depth is
decreased to m/µ, hence the amplitude of the AF signal borne by the RF signal
is not changed. This is also illustrated in figure 6.

We shall now discuss the implications of these results on detection and, in par-
ticular, on selectivity. At first glance, boosting the carrier only seems beneficial
when the resulting signal is fed into a non-linear envelope detection stage that has
a steeper characteristic I-V curve for higher input voltages 9 and will therefore
yield higher AF output voltages for carrier boosted RF signals.

However, there’s also a far more important benefit of boosting the carrier of an
amplitude modulated RF signal. Increasingly crowded AM bands in the 1930s
and early 1940s lead to the demand for enhanced selectivity even with cheap
receivers. In the search for cost-effective solutions it was discovered that the
behavior of AM detectors based on diode or grid-leak detection with low-pass
filtering also affect the selectivity of the receiver. A very good introduction to
this topic can be found in [2] and the references therein.

8By virtue of Fourier’s Theorem the following considerations apply to any audio signal.
9A typical example of such a detection stage is an anode bend detector.
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Figure 6: Reduced modulation depth due to carrier boost

It was found that for diode, respectively grid-leak detectors where the low pass
filter has a roll-off frequency above the frequency difference between two neigh-
boring AM stations (9kHz in Europe, 10kHz in North America) audible content
from neighboring stations is increasingly suppressed as the amplitude of the car-
rier the receiver is tuned to increases relative to the carrier amplitudes of neigh-
boring stations. In non-oscillating mode, the relative amplitudes of selected and
neighboring stations are solely determined by the frequency response curve of
the RF input tank. However, going into oscillating mode and thereby boosting
the carrier of the selected station can greatly enhance it’s amplitude relative to
neighboring carriers and hence greatly improve selectivity of the receiver.

At this point it should be stressed that the improvement in selectivity due to
carrier boost in an oscillating regenerative receiver as described above is funda-
mentally different from the improvement in selectivity in a true multiplicative
homodyne receiver. In the latter, the original carrier is retained and a multi-
plicative frequency conversion with a re-created carrier10 directly down to the
audio frequency range is performed. This puts the audio content from neigh-
boring stations in the AF spectrum above half the frequency difference between
two neighboring AM stations (again: 9kHz in Europe, 10kHz in North America).
These audio frequencies above 4.5kHz, resp. 5kHz then need to be suppressed in
the AF amplifier of the receiver.

10either from a limiting amplifier or a PLL oscillator
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Proper Measurements In Oscillating Mode

The question that arises at this point is how to properly perform output ampli-
tude and bandwidth measurements in the oscillating regenerative circuit that is
injection-locked to the carrier of an incoming amplitude modulated RF signal.
Simply measuring the output amplitude arising from a single frequency driving
voltage as we did in the non-oscillating case will basically lead to a study of the
injection locking behavior of the circuit again. However, our goal is to study the
behavior of the oscillating regenerative circuit that is already injection-locked
to the carrier of an amplitude modulated RF signal.11 In this case, the “input
signal” that we need to focus on are actually the two sidebands of the ampli-
tude modulated RF signal and we are looking for the amplitude and frequency
response curve for these sidebands. But how do we extract information on the
output voltage arising from the presence of the two sidebands from the overall
output voltage?

From the considerations in the previous section we have seen that the reasonable
range of operation of the oscillating regenerative receiver is where the phase shift
between the RF carrier and the locally generated oscillations is near zero. In this
case, and if we take the frequency response curve to be approximately symmetric
around the carrier (respectively local oscillations) frequency, the attenuation of
the sidebands can readily be obtained from the resulting modulation depth of the
output signal. In fact, if we introduce a common sideband attenuation factor of
0 < γ ≤ 1 in equation (9), i.e.

s(t) = µ cos(ωt) +
1

2
m (γ cos ((ω − ωAF )t) + γ cos ((ω + ωAF )t))

we immediately obtain

s(t) = µ

[(
1 +

mγ

µ
cos(ωAF t)

)
· cos(ωt)

]
Obviously, the response of the circuit in oscillating and carrier-injection-locked
state to the sidebands of the input AM signal can immediately be seen from the
modulation depth

mout = m · γ
µ

(11)

of the output signal and we shall now use mout to study amplitude compression
and frequency response of the circuit in oscillating mode.

11This mistake has sometimes been made in the early days of radio, see also remark #3 in
[11].
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Amplitude Compression

From the previous analysis of the non-oscillating state of the regenerative circuit
it is reasonable to assume that also in the oscillating state there is an amplitude
compression effect on the output voltage UC. After all, due to the appreciable
amplitude of the local oscillations the feedback device will be operated in a region
where it provides less feedback than around UC = 0 most of the time. However,
we still need to seek for some numeric evidence to support the above argument.

Let’s take another look at equation (11) while keeping in mind that µ is propor-
tional to the amplitude Ûosc of the locally generated oscillations. Hence if there
were no amplitude compression, the modulation depth of the output signal mout

as a function of Ûosc would exhibit a rigorous 1/Ûosc dependency even for large
oscillation amplitudes. Any amplitude compression will obviously decrease the
modulation depth mout of the output signal even further and therefore lead to
a decay of mout while Ûosc increases that will be faster than 1/Ûosc. Therefore,
we shall plot mout over Ûosc and analyze it’s decay behavior. This has been done
in figure 7 for a median driving voltage amplitude of 3mV that is amplitude
modulated by a 400Hz sinusoidal audio signal at an initial modulation depth of
50%.

The upper plot shows mout over Ûosc on a linear scale, while the lower plot uses
a logarithmic scale on both axes and compares the actual decay behavior to a
1/Ûosc, respectively a 1/Û2

osc decay. Obviously, the decay behavior starts with
1/Û2

osc and then drops even faster as Ûosc increases further. The conclusion, of
course, is that for an amplitude range of the locally generated oscillations of 1.6V
and above there is a very pronounced amplitude compression effect in our circuit
model in the oscillating state.

Frequency Response And Audio Bandwidth

We shall now turn our attention to the frequency response properties of the circuit
in it’s oscillating and carrier-injection-locked state. As in the previous section,
we need to focus on the modulation depth of the output signal and hence the
sideband attenuation factor for the amplitude modulated RF input signal to gain
correct insight into the frequency response behavior of the circuit. More specific,
we shall look at the modulation depth of the output signal mout as a function
of the audio frequency ωAF the input signal has been modulated with, since the
frequency of the two sidebands is, of course, given by ω−ωAF and ω+ωAF where ω
is the carrier frequency. Due to amplitude compression, we expect the frequency
response curve to be more “flat” for larger amplitudes of the locally generated
oscillations. This assumption is indeed corroborated by the numerical results
presented in figure 8 where again a driving voltage with a median amplitude of
3mV and an initial modulation depth of 50% has been used.
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Figure 7: Amplitude compression in oscillating mode

Obviously, for larger amplitudes of the locally generated oscillations, the circuit
will exhibit little cut-off for higher audio frequencies that would in non-oscillating
mode lead to an adverse selection behavior in crowded AM broadcast bands.
Since in oscillating mode however, selectivity is already drastically increased by
the carrier boost effect, this augmented audio frequency range can lead to an
improved sound quality with the adverse effect on selectivity being barely notice-
able.

Conclusions

After numerically analyzing our simple regenerative circuit model with real-time
feedback limiting, we are able to draw a few important conclusions: In oscillat-
ing mode as well as in non-oscillating mode there is an amplitude compression
effect leading to an increase in bandwidth. In non-oscillating mode, this increase
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Figure 8: Modulation depth as a function of audio frequency

in bandwidth can adversely affect selectivity and is one of the reasons why it
is desirable to start with a high physical Q-factor of the tank that requires less
feedback. It has also become obvious that a regenerative circuit in oscillating
mode is fundamentally different from a true multiplicative homodyne receiver.
In particular, the increase in selectivity in an oscillating regenerative circuit is
based on a carrier boost effect in conjunction with certain properties of the enve-
lope detector. Selectivity in a true multiplicative homodyne receiver is, however,
obtained by the fact that the audio frequency content of neighboring stations
is converted into a frequency range beyond half the frequency distance between
carriers and then subsequently suppressed using filters in the audio frequency
section of the receiver.
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