AVIA $26 / 445$

Closed

UNTIL
scanned by emilio ciardiello for radiomuseum.org

COPY No.

T.R.E. REPORT

No. T 1473
(Attention is called to the penalties attaching to any infraction of the Official Secrets Act.)
This document is the property of H.M. Government.
It is intended for the use of the recipient only, and for communication to such officers under him as may require to be acquainted with the contents of the report in the course of their duties. The Officers exercising this power of communication will be held responsible that such information is imparted with due caution and reserve.

Any person other than the authorised holder, upon obtaining possession of this document by finding or otherwise, should forward it, together with his name and iddress, in z^{2} closed envelope to The Secretary, Ministry of Aircraft Production, Church House, Westminster, S.W.1. Letter postage need not be prepaid, other postage will be reiunded.

All persons are hereby warned that the unauthorised retention or destruction of this document is an offence against the Official Secrets Acts 1911-1920

TRE Report G10/R143/43
Shoct 1 of 5 Shoets
Unit T. R. 3539, using the Porrer Klystron CV. 150.

1. Sureary
2. Introduction
3. Gereral Description of the Circuit
4. The Pulse IDystron CV. 150
(a) General
(b) Ratinz
c) Frequancy stability
(d) Katchini
(o) Power Output
(f) Cold Resonance
5. The Mixer
(a) Ficcessity for Modification
(b) R.P. Impcdances of CV. 101 (ycllow spot crystals)
(c) The modificd lifixer
6. The Gas Siritch CV. 157
(a) Description
(b) Adrittances of CV .157 when attached to edze of wavejuide
c) Usc of CV. 157 as "Anti-T.R." Stritoh
(d) Usc of CV. 157 as "T. R." Sritch
(c) Distance apart of the two Stitches
7. The Fave-juidc to Cable Trangformer
8. Performanco of the Complote R.F. Circuit.
(a) Porrer Output into Katched Load
(b) Altitude Test
(c) Effect of Acrial Kismetoh upon Transmittor Frequency and Power

APEPNDLX - Equivalent Circuit of Gas Sutitchos and Mixcr. Formulec.

LIST OF FIGURES

1. Circuit Dirgram
2. Sketch of R.F. Circuit (ATR 60/137)
3. Resonator of CV. 150 ATR 60/138
4. Cold Impedanoc of CY: 150 (ATR 60/139)
5. (a) 13xer
(b) Ingedances of CV. 101
6. Norrali 4 Admittances of CV. 157
$\operatorname{ATR} / 60 / 140$
ATR/60/141
7. (a) Equivalont Circuit ATR/60/142
(b) Surface Curronts on H_{40} Favo-guide.

Additional TRE Dravings
requirod to be publishod.
CTR. 19112
AER. 19103
ATR. 19109
ATR. 19110
ATR. 19111
ATR. 19612

1. SJTRCARY

This report describes sone of the experinental moric carried out at TRE in connection with the Unit - TR3539, oporating on 9.2 to 9.6 cm , and designed for uso in Oboc Hark IIB. The now corpoments ysed in the box aro also described, viz. The Pulse Klystron CV.150; The Saft Gas Sifitch CV. 157; and a modifiod crystal mixor.

The perforrance under experirental conditions has boion masurea. About 15-20 NW peak power are obtained uith 4 /haioc. pulises at a mardintm repetition rate of 133 per secona, or the cquigialent moon powt. An affort has been made to estinate the effect of aerina mberatch upon the porformanoe; from which it is apparent that very carpeul agrial doedign lis onpespory if the system is to function affiptertiy.

2. INTRODUCTICN

No ner principles are uscd in the desisn of this circuit, but oring to the difficulty of coupling out of a powcr klystron by mcans of a loop, especially at high altitudes, it was decided to usc a wave-guide feed out of the klystron. It then becanc convenient to substitute for the convential concentric line a rave-cuide T.R. switchin' unit, usin soft gas stritches of the type which have been developed for higher poiccrs on magnctron equipuents, and to transform to cable only on leavine the box.

The work wes carricd out under pressure for service reasons, and the experiments arc incomplete in sone respects. It should be emphasised that the box ras not cesigncd as a Universal Unit, elthough where possible it has been made interchanscable with the projected Universal inystron Iox.

The klystron :ith its resonator circuit was devcloped by ifessrs. E Ki. The layout and enfincerine of the box were the responsibility of the Gramophone Co.

The same R.F. circuit has boen adopted by the Gencral EIcetric Corpany for their Fround station, except that they heve used their o.n mixcr. It is described in G.E.C. Report No. 8253; which also jives a proccturc for scttins up the circuit.

3. GENERNL DESGIPTION OF THE CIRCUIT

A simplified circuit diagram is given in Fig.1, while Fiz. 2 , whows the special arranfencnt of the most irportant corponents.

The klystron focds directly into the end of the wave-guide with no natching device other than the special resonator irindour.

The gas s:ritches V2 and V3, one quarter wave apart, are the fariliar M \dot{R}_{0} " and "anti-T.R." stritches. Spitch V2 (anti-T.R) is closcly coupled to the guide by a mindost in the guide wall $1 \frac{1}{2}$ " long by $\frac{5}{6}$ vide and exists to provent the reccived siznal dissipating itscle in the klystron resonator. The valve V3 is more loosely coupled by a rindor $1^{1 \prime} \times \frac{5}{6}$ and protects the crystal from injury durins transrission.

The mixer is adapted from the fixed 9.1 om mixer, but one tuning adjustment has been rostorod to deal rith the very wide irpodance variations wich have been found in yellost spot crystals (CV.101).

The local oscillator, CV. 158, is tuna 3le by renote control by means of an Admiralty notor pattern $92981 / k_{.} X_{\text {. . All }}$ other tuninf controls must be sct up on the अround.

The pulse transformer has a step up ratio of 1.5:1, and is adapted to 4 puscc. pulses. The box must be driven iby a $7.8 \therefore \%$ pulic.

The head arwilifier hes one stage on $14 \frac{1}{2} \mathrm{kc} / \mathrm{s}$ and a bend-width of $10 \mathrm{Lc} / \mathrm{s}$.
4. THE PULSZ KLYSTRON CV. 150
(a) The CV.150, hich is described in $\mathrm{E}_{0} \mathrm{Hi}_{6} \mathrm{I}_{\mathrm{C}}$ Report No.RF/137 is of the double zap singic bean transit type.

Fic. 3(a) and (b) show a cross-section through the catchcr, and the plate by which the klystion is bolted to the suide. This type of window gives almost maximui porer into a $2 \frac{1}{2}^{\prime \prime} \times 1^{\prime \prime}$ rectangular wave-fuide irithout pulling the resonator frequency scriously. Tho small amount of pulling is taken up by channclling the bunoher resonator as shom in Fig. 3 (c),

Each rosonator is tuncd by five sprini-loadod plungers. The tuning is flat, and it is not difficult to put the valvo into oscillation.

The results described in sub-pararraphs (d) and (c) werc obtained with a type 64 modulator on 1 usec. pulses and with a special pulse transformer because the Oboc modulator was not available. They cannot thercfore be rccorded as final.
(b) Rating

Peak Power Input	150 KK.	
Pak Power Output	18 र丆.	
Heater Voltazc	13	
Hicater Current (202 x)	2.2 amps.	
Cathode Voltage	-12.5 KV pulsed.	
RCsonator Current	6 arms.	
Collector Current	6 anps.	
Tave-lensth coverage	* $2 \frac{1}{2}$ mon. centred	on 9.4 cms .
Haxirun mean input po	ower 80 rratts	

(c) Frequency stability

The frcquency chanjes about $6 \mathrm{mc} / \mathrm{sec}$. for a voltage change of 1 KV ., at 12.5 KV . On warming up the frequancy changes by about $3 \mathrm{mc} / \mathrm{sec}$. durin the first 15 minutes, and thereafter remains steady. The-frequency is also seriously affected by the load presented by the aerial. This point is roforred to under pararaph 3(b) below.
(d) Matchinz

For maximan power output the kiystron requires a standinz rave of about $1.5: 1$ in volts with a voltafe minirmn at the resonator opening. Into a natched cuide it delivors about $90 ;$ of its maximun poirer.

(e) Poraer Output

On the type 64 modulator with about $12 \frac{1}{4}$ IV on the cathode and a pulse recurrence frequency of 490 the following potrers were measured in a correctly matched mater calorineter. Owiñ to the low termerature differcrice obscrved the mean power may be in error by 10\%. This valve mas ratcd by the makers at 17 Fi , and considering the difference in conditions these results agree well enough at the lower wave-lengths:-

$$
\begin{array}{rlrl}
\lambda=9.16 \mathrm{on} & \text { Peak Porrer } & =15.2 \mathrm{Ki} \\
\lambda=9.30 \mathrm{~cm} & n & n & =15.2 \mathrm{Km} \\
\lambda=9.55 \mathrm{~cm} & n & n & =12.3 \mathrm{KH}
\end{array}
$$

(f) Cold Resonance

Some measurcments have been made on this with the cxperimental arrangenent shom in Fizg. A signal of variable frequency is fed into the klystron, and the standine wave and miniman position in the guide are noted. From these figures the normalised impedance (in terms of the ziide impedance) presented by the klystron arc calculated, the point of reforence beins the surface of the plate.

A typical sct of results is show in Fig. 4 . The peak at $3230 \mathrm{Mc} / \mathrm{s}$ is due to the catchor, and that at $3322 \mathrm{Mc} / \mathrm{s}$ to the buncher.

The two peaks are rot quite independent of each other in position or hcight. The exact rciative positions of the contre of the catcher peak and the transmittod froquoncy aro liable to vary, and it is this vhich makes the second ges-gap necicssary
5. THB IMXER
(a) Mocessity for Oodification

It uas fount, on removing the $l 00 p$ fron the present fixed mixer use on 9.1 cm equipnent (see TRE Drg. D100/7974), that very largc variations impedance were neasured ghen dilferent crystals were inserted in the mixe This effect tas traced chiefly to the large variation in the reactive par of the crystal impodence. Rough calculations. show that, after allowing for the inuluctance of the loop, the coupling intc the rhumbatron will be sreatest when a crystal of low or negative reactance is used, and will fas off by a factor of about five mien a high reactance crystal is used ife should therefore coyect that, on an average, lon reactance crystals vould give a zood epporent sensitivity but be liable to burn-out, while high reactance crystals vould appear to be scveral db. below the best possible fijure.

It ras thercfore decided to redesign the mixer so as to match out the reactive part of the crystal impedance, and make use of the fact that the rcsistive part is usually within $\pm 20 \%$, of the mean. There arc several nethods of dcinj this: the one adopted involved a minimum of experimentet and uscd a large meber of machined parts from the old mixer, but it has the jisadvantaje $\hat{j} \hat{r}$ adding a tuning control in the mixer itself.
(b) R. F. Inpedances of Yellor Spot Grystals, CV. 101

The crystal ineedances verc measured in the head of the mixer, mich was not modified in any tray. The crystal arn was removed from the nixer and attached dircctly to a 75 ohm impedance meter. In all cases the outpu froc the signal zonerator mas adjusted until the crystal current was 0.3 m This procedure involves the assumption that the impedance measured when the simal is sufficiontly strons to cause a crystal current of 0.3 mA is the sare as when the signal is small and the crystal current is drami from the local oscillator.

The iupedance is calculated at a point level bith the spot on the crystal, when as show. in Fis. 5(b) the resistive part is found to be neariy constant.

(c) The Hodified Hzer

The essential Pcatures of the modified mixer are shom in Fije 5(a). For details, the craminss of Gramophone Co., should be referred to.

The distances from the crystal spot and from the loop to the centre of the block arc both onc quarter rave-length. It is thus possible for the st to tune out the reactarces or both the crystal and the loop, and for an irmedance equal to the real part of the crystal impedance to be presented to the gas switch. This mizer has:ehorter arre and a-siallor loop than the old The loop is made by bending a portion of the outer mall round a jig and soldering to a projection on the inner. All dielectric spacers have been eliminated from the inside of the raixor. The twing stub makes use of a noveable polythene sluz in a 120 ohm line. This is frec from contact troubles but is only just able to take up the variations in crystal impodence

The 100 s sizc, in the absence of special measuring gear, was arrived at by trial and error. Protcction was, testod directly by ruming a number of crystals under operating conations. The lenith of the tuming stub could then be calculated, ani a final adjustiont mede by exporiment.

It is rorth notin that if the crystal inpedance riscs under pulsc conditions theprotection incrcasos, an offoct noted in tho Radiation Laboratory Roport 53-11, ani also that detuning the mixer can only inorease the protection to the crystal. (Soe Appenajix (o).
6. MGE GAS SITTCR CV. 157
(a) Description

The CV. 157 is a soft sas sriteh desi ned to be coupled directly to a wave-cuide and thus closcly rescmiles the ladiralty valves CV. 106 and 107.

It differs from OV. 106 in three important respecis.
(i) The frequency which is tuneble from $3140 \mathrm{Mc} / \mathrm{s}$ to $3250 \mathrm{Mc} / \mathrm{s}$.
(ii) The size of the aperture connecting it to the Juide This is as large as is mechanically possible, ($1 \frac{1}{2}{ }^{\prime \prime}$ long by $\frac{5}{1}{ }^{\prime \prime}$ acrosi) and the coupling to the buide is reduced where necessary by havine a smaller windom in the Euide wall.
(iii) The dianctor of the resonator thich is 46 mme instead of 43 me in CV. 106. This increasc in size is not an advantaje.

The CV. 157 is desifned for swall scale production only, and it is hoped to replace it by a dic-cast version which will have parts in common with other zas switches. The resonator of the valve is shown in TRE dramings CRT.19112, ATR.19108-9-10-11. The four 2 I. A. holes in the baso plate corrospond with those in CV.106, in order that the valve may be used in Admiralty Equipment if desired,
(1) The Admittancos of CV. 157 then attached to the edge of the Tavc-auide.

For purely mecharical reasons it mas decided to couple the CV. 157 to the edze of the guide. In this position the coupled adrittance of the rhumbatron acts in parallel uth that of the giide. The normalised adrittanoes can be measured either by matching the guide or by terminating it mith a stib of known (proforably zero) susceptance as shown on Fig.6. If the frequency of the simal is kept constant and the tuning plungers are noved, the measured admittances lle on a circle similar to that shown on Fis.G. The plotting of theso circles is ofton of use, since it enabIes a number of obscrvations, each one of wioh may be inaccurate, to be corrclated. The rosults given herc vere all talcen using a crystal standing wave detector and assuming the square lawo as very large standing waves are sometimes neasured there may be considerable systematic errors.

The Anti-I.R." switch, thon propoily tunca, is almost equivalant to a short olrcuittacross tho guiac, and the kiystron impedance in parallel with it can only incrcase the effectiveness of the short oircuit. One quarter vave away, therefore, Whero the "T. R.' sintoh and mixer are matched into the guide, We havo the oquiralent of e resistance >75 in parallel with unit resistance, and tho theoretical 10 ss milt $60<0.3$ oh.

(1) Whathing, Tho coupzung between mixer and rhumatron is fixed by oonsiderations of protootion (see para, 5c). It remains therefore - to choose the size of the couping holc so as to give the best
ratch into the suide under conjitions of reception. This cannote be donc accuratcly for all crystals bccause thcir finpedances vary but neither is it vory ipportant, a nis-match of loss than 2:1 be acceptable. The beet size of hole tras found to be $1^{\prime \prime} \times \frac{5}{8}$ ". In one exjeriment with this arrangenent when thirteon crystals iere tried, whose reactances variod from -0.4 to +1.1 , the standing wa ratio in the auide varied fron 1.4 to 1.6 in volts. not easy to neasure directiy with ary accuracy but it may be obtained by a sirple calculation from results given in paras. 6 (b) and (i). The maxirum resistive irpedance of the zas switch when loaded by the mixer and coupled by a hole $1^{\prime \prime} \times \frac{5}{8 \prime}$ is nearly unity, while vithout the mixer it is $5 \frac{1}{2}$. It follows that the ratio

$$
\frac{\text { Porrer lost in Rhumbatron }}{\text { Total Poìcr }}=\frac{1}{5.5}
$$

correspondiñ to a loss of 0.9 db . (sec Appendix (d))
(e) Distance Apart of the Tro Sritches
blthough the tiro sritches are so close together thet the apertures actually ovorlay, it ras not possible to detect any dieect ooupling betreen then The distance apart is not critical, and the arrangerent is not frequency sensitive over the tuning range of the klystron.

7. THE FAVE-GUDE TO ChITS TRAPSPORUER

A special noulded probe transforscr endint in a standard high porer plue and zatching into 63 ohns was developed. This is shorm in TRB draring CRT. 17329. The matching necessitates the exact determination both of the length of the probe and the position of the plate, but once these are fixed a probe of this type is uscful over quite a large frequency banc. Six modcls of this have been tested betreen 8.9 and 9.6 cms , and they produce standing raves better than 1.2:1 in volts ovcr this band.

8. PRRPORMANCE OP THR COMPISTB R.P. CIRCUIT

(a) Posicr Output into a matched load

The switch syston under transmitting conditions produces a small standin ${ }^{\text {E }}$ save (1.2 in volts), bocause although the sritohes are a quarterwave apart their aperturcs arc not the same. The klystron was placed at the voltage minimum of this standing wave system, 7.5 oms from the contrc of the "ainti-T. Re" switch; The output poror was them meassired at the sanc frequencies as those of parai 4 (e). The porer was never decrcased by more than 0.4 db . by the failure of the switch systen to meet cxactly the conditions of para. 4(d).
(b) Altitude Test The thole box has been tested by the Gramophone Co., at low pressure, and found to rithstind the equivalent of, about $40,000 \mathrm{ft}$. Ireakdom first occurs betreon the cathode and resonator of the cV. 150.
(c) Befect of Serial Wispatch on Transmitted frcquency and Porer

To test the effect of bedly matcood aerials on the transmitter perforinance the output probe ras ronoved and a matched guide substituted A trolitul slue tras then poved to ani fro in the guide, producing a standing. wave of variablc phasc. Tho results aro sumarisod below.

OST SSCTE T

- $\quad \because$	$\begin{gathered} \text { Sluz A } \\ \text { Standing rave } \\ 2.15: 1 \text { in volts } \end{gathered}$	$S_{t} \frac{\text { Slun }}{}$ $1.47: 1 \text { in volts }$
Kaxiraum frequency pulling from frequency delivered into Natched Load.	$\begin{aligned} & +7 \mathrm{Mc} / \mathrm{s} \\ & -5 \mathrm{Mc} / \mathrm{s} \end{aligned}$	$\pm 3 \mathrm{rc} / \mathrm{s}$
Maximun dros in output porer.	$3 x^{\prime}$	$2 z^{\prime}$.

These figures shor that a really badly ratched aerial may easily halve the output pover, while if as the cerial scans the phase of the standing mave chances, the transmitter frequency may bc pulled right out of the receiver band-width. It should be stated that measurements on nagnetrons revcal ceffects of the sanc order, and the figures above do not irply a defect peculiar to the CV.150.

It cannot horever be too strongly emphasised that carcful aerial natching is essential if T. R. 3539. is to sive its best output.
(a) Figure 7 (a) shous a proposed cquivalent circuit for the mole RoF. systen and nixer on reception. fiost of it is self-explonatory but the folloring points require cocxant.
(i) I_{3} and I_{4} represent the mindows coupling the saitches to the guide. There is some theoreticnl Justification for regarding a mindow on the edge as equivalent to a purely inductive coupling.
(ii) The prescnce of the quarior-avive transformers joining liz and I_{4} to the guide is best miderstood, at ory rate qualitatively, by considering the ourrents flowing in the trayls of the guido. i diagram of these is reproduced in figure 7(b). It will be noticed that the cuerent roximum on the edge of the guide is opposite the current minimum at the to, $i_{0} e_{3}$ she currents on edge and top are 90° out of phase. If re regara the coupiing betrecn the guide and the oavity as due to the sharing of current betreen then, be see that a rindow-coupled cavity at B is roughly equivalent to a similar ons on the top at in Nor the oavity at 4 pould producc some impedonoe z_{i} which mould be in series, with the guide jmpedance 2 g ,
 nensured at c. Z_{g} is of course equal to the guide admittanoe mensured at C, if the pindow is rapoved from is to B_{0}. Thius the amittances of a mindon on the cage would follor sinilor lans to the jrpedances of 2 mindor an the top. Its namittance must be oddec to the euiae adri.ttanco as measured at a point opposite the rindow. It tharefore, appears ts be in parallel with the guide.
(iii) Part of the systom composed of 75 ofm concentric line and part of she-guido bhose characteristio f-Nodance is unknoran., The define all impedonoes in terns of the guide inprodnces, is a result, trhile pe oon measure the ratio of \mathbb{X}_{2} to the rhumbation or nimoon inuosnnces, tre connot find the absolute value of either.
 unjess anrked with a lengti.
(b) Z is the mixer inpodarice noas =ed across $厶$ ib.

$$
\begin{align*}
& Z_{2}=R_{2}(1+2 j \mathrm{j}=\mathrm{s}) \text { is the trepance of the rhumbatron. } \\
& \text { (Tione Q resers to the cavity) } \\
& j=\frac{-\lll 0}{\omega_{0}} \text { being a neasure of the differennoe } \\
& \text { the ecavity and the activil fitotivenay. } \\
& Z_{\text {, is the inpedence neosured across cIj Iooking }} \\
& \text { izto the gas sritch. This is of ootrose equal } \\
& \text { to the adelttonce neosured at KIP. } \\
& x_{1}=62 \\
& x_{2}=z_{2} \\
& K_{1} \text { and } K_{2} \text { are the ooupling inpedonces, taken as } \\
& z_{3}=x_{3}+\frac{\pi_{2}^{2}}{z_{2}+\left(\pi^{2}\right.} \tag{1}
\end{align*}
$$

(c) If f is varied the locus of Z_{3} an the Irgand diagrea is a circle of the type shom in Figure 6 , with its centre a distanoe X_{3} above the real axis and a dinneter given by

$$
\begin{equation*}
D=\frac{K_{2}^{2}}{R_{2}+\frac{K_{1}^{2}}{R_{1}}} \tag{3}
\end{equation*}
$$

Avidentily if the nixor is not Fresent the dinneter is

$$
D_{1}=\frac{K_{2}^{2}}{R_{2}}
$$

(d) The ratio of the power lost in the rhmbatron (o) to the total porser (P) fed into the rhusbatron

$$
\frac{p}{P}=\frac{R_{2}}{R_{2}+\frac{K_{1} 2}{R_{1}}}=\frac{D}{D_{1}} \text { (see para } 6(\text { (a)) }
$$

(e) If the mixer is not correctly tomed the tern $\frac{K_{1}{ }^{2}}{R_{1}}$ in (2) must have a roactive tern added to it. This can only decrease the porer absorbed by the inxer and hence increasc the protection to the crystal. (see para, 5(c)).

Fo are greatily indebted to Dr. Starr for haip in proparing the matter of this appendix.

WJत/TiS
23.8 .43

$\mathrm{S}, \mathrm{NO}_{0} 4842$

EIG2 SKETCH DF OUTPUT CIRCUIT.

(AMERUCAN PROJECTION)

scanned by emilio ciardiello for radiomuseum.org

G.4 COID inperanice of CVISO
TRE MAP
6E DATE W WOTVE
75NHISISBy
(3) 称 410
 $4]-1=$

FIG. 5 (a) MIXER.
(b) MPEDANCES OF CVIOI CRVSTALS, MEASURED IN 75Ω LINE.

BASE PLATE

ITLE CASNG in YAUVES ITR MAP
$C V 15$, $0 \sim 179$, $4-A T H$ PT

DRG NA
A-MR19108


```
NOTE! ALL DINENSIONS
ARE OVER PLATING.
```

IING PLUG
AS6
SHVELV FLATE

scanned by emilio ciardiello for radiomuseum.org

scanned by emilio ciardiello for radiomuseum.org

