Thyristor Aufbau und Funktionsprinzip

Funktion

Schaltsymbol

zur Wiederholung

- 3. Stellen Sie drei wichtige Zustände des Thyristors an hand der Kennlienie und an hand des Schaltzeichens mit der entsprechenden Polung dar !
 - 1. Zustand : Spenend

2. Zustand :blocklert

(-)

3. Zustand leitend, gezündet

Vorteile und Nachteile des Thyristors gegenüber dem Transistor!

Vorteile:

große Ströme steuerbar

relativ kleine Bauform

sehr schnelles Schalten

Nachteile:

schaltet nur Ein oder Aus (keine Zwischenzustände möglich)

temperature mp find lich

starke elektromagnetische Störfelder (gering EMV-gerecht)

Kennlinie des Thyristors und markannte Punkte der Kennlienie!

Verlauf einer Spannung an einem Verbraucher, der über Phasenanschnittsteuerung mit einem Stromflußwinkel von 120 $^{\circ}$ an einem Thyristor (nicht Triac!) angeschlossen ist !

Wie oben, aber nun mit Verwendung eines Triac!

Verlauf einer Spannung, die über Schwingungspaketsteuerung angesteuert wird und verwendeter Schaltertyp.

Schaltertyp: Nullspannungsschalter

Ersatzschaltung eines Thyristors als Schützschaltung

Vervollkommnen Sie die Ersatzschaltung so, dass die Polaritäten wie bei einem katodengesteuerten Thyristor wirksam sind!

Lösung

mündliche Wiederholung

