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Abstract

A considerable number of vintage radio sets for the AM broadcast bands use a build-in
antenna without providing jacks to connect external antennas. Testing, maintenance,
repair and alignment of these receivers therefore requires the use of home AM transmit-
ters providing an amplitude modulated RF signal to the receiver. Since these build-in
antennas are typically magnetic antennas (loop or ferrite rod), it is most convenient
to also use a magnetic loop transmitting antenna and exploit local magnetic coupling
to the receiver’s build-in antenna. Besides creating the desired RF magnetic field for
the receiver in question, there might be undesirable interferences with other nearby
receivers. Also, the loop antenna will emit electromagnetic radiation, which for our
purposes is unnecessary and therefore undesired since it further contributes to the
electromagnetic pollution of the AM bands. The goal of this paper is to provide the
reader with ready to use formulas to calculate the magnetic flux density of the local
magnetic field and the equivalent signal level provided to the receiver as well as to
estimate possible local interferences and the total power of undesired electromagnetic
radiation emitted. It turns out that for reasonable signal levels provided to the receiver
the danger of interference within apartment buildings or neighborhood areas can be
practically eliminated by exploiting a steep 1/r3 decay in the magnetic field. Also,
the total power of emitted electromagnetic radiation is typically in the picowatt range
or below, making far-field interference neglectable for all practical purposes. Finally,
it turns out that for reasonable signal levels, the power needed to drive the loop is
typically in the lower microwatt range.
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This paper is organized as follows: First, general formulas to calculate the
B-field (magnetic flux density) created by a rectangular loop at various spots and
a formula for the electromagnetic radiation emitted by the loop are presented.
In order to retain accessibility of this section to the more practically oriented
reader, most of the calculations leading to these results have been moved to
appendix A. Next comes the introduction of the equivalent signal level, relating
the magnetic flux density created by the loop and provided to the receiver to a
common measure of signal levels. These results are then applied to a large “room
size” and a small “workbench size” loop to calculate the amplitude of the RF
current in the loop necessary for reasonable signal levels to be provided to the
receiver and the resulting near-field interference with other receivers as well as
the electromagnetic radiation emitted by the loop. Finally, some considerations
on providing well defined signal levels with RF voltage generators connected to
loop transmitter antennas and required output power are presented. A summery
of variables and constants used in the paper is given in appendix B. The reader
may find it convenient to print this appendix and use it as a quick reference sheet
when reading this paper.

Electrodynamics Of The Loop

By forcing an RF current I(t) through a loop it can be used as a transmitter
antenna. In this section, we will focus on it’s general electrodynamic properties
and derive ready to use formulas for our more practical considerations later on.
Our considerations will be based on a rectangular loop in the xy-plane with the
center at the origin of the 3-dimensional cartesian coordinate system and side
lengths x0 and y0. This loop is depicted in figure 1

For convenience we will alternatively use spherical coordinates r, ϑ, φ. For these
coordinates, we shall use the following convention generally adopted in physics
where

x = r sin(ϑ) cos(φ)

y = r sin(ϑ) sin(φ)

z = r cos(ϑ)

and of course

r =
√
x2 + y2 + z2 = |r⃗|

In particular, ϑ is the angle between the imaginary line connecting a given point
in space to the origin and the z-axis of the cartesian coordinate system.
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Figure 1: Position and orientation of the loop

Henceforth, we shall make the following assumptions about the loop. The size
of the loop is small compared to the corresponding quarter wavelength λ/4 of
the highest RF current frequency in the loop. The current I(t) in the loop is
therefore uniform. Furthermore, we assume that the ohmic resistance of the
loop is neglectable, thus there is no voltage drop along the loop. Under these
assumptions, closed-form expressions can be given for the electromagnetic fields
generated by the loop for different points and regions in space. It should be noted
that all obtained results can be transferred to a multi-turn loop provided that
the distance (along the z-axis) between the individual turns is small compared to
the size of the loop in the xy-plane and the overall length of the wire is still small
compared to the corresponding quarter wavelength of the highest RF current
frequency in the loop. In this case the current in the loop is still uniform and
I(t) can simply be replaced by nI(t), where n is the number of turns.

The Magnetic Field At The Center Of The Loop

First of all, by virtue of the Biot–Savart law that can be obtained from Maxwell’s
equations, the magnetic flux density B⃗ (measured in Tesla) at the center of our
loop can be calculated for a DC current I in the loop. The result is [3]

B⃗C =
2µ0I

π

√
1

x2
0

+
1

y20
n⃗
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Where n⃗ is a unit vector perpendicular to the loop with it’s direction determined
by the “right-hand thumb rule” [4] and µ0 = 12.56637... · 10−7 Vs

Am
is the magnetic

constant. By simply replacing the DC current I with an alternating current

I(t) = Î sin(ωt)

and assuming a square loop with x0 = y0 = l the absolute value of the B-field
amplitude vector at the center of the loop is given by

B̂C = | ˆ⃗BC | =
√
8
µ0Î

πl
(1)

It should be noted that this so-called quasi-static approximation of simply replac-
ing I with I(t) is only possible if λ/4 of the RF current frequency ω is considerably
bigger than the size of the loop. This, however, has already been one of our basic
assumptions about our loop.

The Magnetic Near-Field Of The Loop

The next region in space we’ll focus on is the so called near-field region where the
distance r of the observer to the loop is considerably smaller than λ/2π of the
RF current frequency ω in the loop. We will restrict ourselves to the part of the
near-field region where the distance r from the loop is significantly larger than
the size of the loop, so that in combination our prerequisites for the formulas
given in this section are l ≪ r ≪ λ/2π, where we have again assumed a square
loop with side length l.

The magnetic flux density amplitude vector
ˆ⃗
BN(r⃗) of the near-field in the spher-

ical coordinates introduced earlier is then given by

ˆ⃗
BN(r⃗) =

3µ0a

4π
Î
1

r3

 sin(ϑ) cos(φ) cos(ϑ)
sin(ϑ) sin(φ) cos(ϑ)

− sin2(ϑ) + 2
3


The reader is referred to appendix A for a more detailed derivation fromMaxwell’s
equations. From the above expression, the scalar amplitude B̂N(r⃗) of the mag-
netic flux density in the near field is

B̂N(r⃗) = | ˆ⃗BN(r⃗)| =
3µ0a

4π
Î
1

r3

√
4

9
− 1

3
sin2(ϑ) (2)

It is worth noting that in this region the aspect ratio of the loop is no longer
relevant. Only the area a = x0y0 of the loop (respectively a = l2 for the square
loop) matters. In fact, it follows from appendix A that the shape of the loop no
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longer plays a role here. From the above equation it becomes obvious that the
magnetic near-field has directional properties: It is the strongest along the z-axis
(ϑ = 0) and the weakest in the xy-plane (ϑ = 90◦). These directional properties
are most easily visualized in a polar plot of magnetic flux density (absolute value)
versus ϑ as shown in figure 2.
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Figure 2: Directional properties of the magnetic near-field

Electromagnetic Far-Field And Radiation Of The Loop

The region in space where the distance r of the observer from the loop is signifi-
cantly bigger than λ/2π is called the far-field. An observer in the far-field region
sees electromagnetic waves emanating from the loop and propagating outwards
into space (for a detailed derivation see appendix A). These electromagnetic waves
are approximately plane waves in this far-field region. We are not so much inter-
ested in the expressions for the E- and B-fields as we are in the expressions for
the electromagnetic power being radiated by the loop (the reader interested in
the fields is again referred to appendix A). After all, this is what is an undesired
“side effect” of our attempts to use local magnetic coupling (induction) to feed a
signal into our radio set. Our goal will always be to minimize the electromagnetic
radiation “leaking out” from our loop antenna setup to prevent further pollution
of the AM radio bands.

The electromagnetic radiation power density is given by the well known Poynting
vector [5]. It is pointing in the direction of the energy flux, which is outwards
away from the loop along imaginary lines connecting the observer to the origin
where the loop is located. It’s time averaged absolute value is the power density
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in watts per square meter for a small surface perpendicular to the direction of
the Poynting vector. In the far-field of the loop the absolute value of the time
averaged Poynting vector is given by (see appendix A)

S(r⃗) =
π2µ0a

2Î2c

2λ4

1

r2
sin2(ϑ) (3)

Where c is the speed of light in a vacuum and also approximately in air. From
the above expression, the far-field radiation pattern of the loop antenna can be
visualized by a polar plot of the absolute value of the time averaged Poynting
vector versus ϑ as shown in figure 3.
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Figure 3: Far-field radiation pattern of the loop

Obviously, radiation reaches it’s minimum (zero in the first order approximation
used here) along the z-axis (ϑ = 0) and has it’s maximum in the xy-plane (ϑ =
90◦).

From the absolute value of the time averaged Poynting vector (3) the total power
radiated by the loop can be obtained by integrating S(r⃗) over a closed surface in
space. The result is (see appendix A)

P =
4

3
π3µ0Î

2c
a2

λ4
(4)

Again, as in in the near-field region, the aspect ratio and even the shape of the
loop is no longer relevant. Only the area a = x0y0 (respectively a = l2 for a
square loop) of the loop matters.
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Practical Applications Of The Obtained Results

Let us now focus on applying the formulas presented so far to practical exam-
ples of AM home transmitter loop antennas. We’re in particular interested in
providing reasonable signal levels to our own receivers while estimating possible
near-field interference with other receivers as well as “leak radiation”. It should
be noted that the above formulas have been derived for free space, therefore the
results they provide for interference and leak radiation present an upper bound-
ary since our transmitter loop antenna will usually be indoors and other receivers
will typically be behind walls or ceilings.

Local Magnetic Field And Signal Level

The formulas derived so far allow us to calculate the local magnetic field given as
the magnetic flux density measured in Tesla at the spot were our radio receiver is
located. This however is not really an intuitive figure and we need to find some
way to relate this to more common measures for signal levels. Fortunately, this is
quite simple. A signal level or signal strength in wireless communications is typi-
cally given as the scalar amplitude of the electric field strength Ê of an incoming
plane electromagnetic wave in volts per meter. In our setup, we are however
not exposing the radio receiver to an incoming plane electromagnetic wave from
our home transmitter (for that we would have to place the receiver a couple of
wavelengths away from the antenna which is not viable for the AM broadcast
band frequencies). We are merely creating a local magnetic field to mimic the
B-field of an incoming electromagnetic wave. For a plane electromagnetic wave
in vacuum and approximately also in air the scalar E- and B-field amplitudes are
related by [7]

Ê = cB̂

This relation is equivalent to the impedance of free space commonly used in elec-
trical engineering [8]. We can now assign an equivalent scalar E-field amplitude
to our locally generated B-field. It should again be stressed that this is not an
actually generated electric field and has nothing to do with the electric near-
field of the loop (see appendix A). We shall denote this equivalent scalar E-field
amplitude by the letter σ to avoid confusion with the actual electric fields. Hence,

σ = Êequiv = cB̂C/N (5)

with the scalar amplitudes B̂C respectively B̂N of the locally generated B-fields
from the previous section. We can now use σ as the equivalent signal level in
volts per meter.
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We now need to at least roughly get an idea of the signal levels that can be
deemed “reasonable” when providing them to a typical vintage AM radio set.
We will base our considerations on ITU recommendations for minimum signal
levels from 1975 given in [9]. For the region containing Europe, minimum signal
levels in the range from 63 dBµV/m (1413µV/m) to 77 dBµV/m (7079µV/m)
are suggested. Since we are dealing with potential low-end receivers and noise
in the AM bands has probably increased a lot since 1975, it seems in order to
roughly double these figures. We therefore adopt a range from 3000µV/m to
15000µV/m as a “reasonable” signal level. In future years, these levels may
have to be increased further since more and more applications, e.g. power line
communication (PLC), create electromagnetic noise in the AM bands.

Big Loop With Receiver At The Center

Let us first look at a relatively big square loop with side a length of l = 2m with
the receiver located at the center of the loop. From equations (1) and (5) the
equivalent signal level provided to the receiver is

σ = 3 · 108m
s

√
8
12.56637 · 10−7 Vs

Am

π

Î

2m
≈ 170

V

Am
· Î

Since our required signal level range is between 3000µV/m and 15000µV/m, the
required current amplitude Î of the RF current in the loop needs to be in the
range between 17.6µA and 88µA.

With these results, the total radiated power of the big loop can be calculated.
From equation (4) it follows that

P =
4

3
π3 · 12.56637 · 10−7 Vs

Am
· 3 · 108m

s

(
l

λ

)4

Î2 = 15.585 · 103V
A

(
l

λ

)4

Î2

Since we’re interested in the upper limit for the total radiated power, we’ll use
λ = 200m (f =1.5Mhz). With l = 2m, the above equation turns out to be

P = 15.585 · 10−5V

A
· Î2

For the RF current amplitude range of 17.6µA to 88µA, it turns out that the
total radiated power does not exceed 1.2pW which is neglectable for all practical
purposes.

We now need to estimate possible interference with other receivers in the near-
field range of the big loop. This is done by determining the ratio B̂C/B̂N of the
magnetic flux density at the center of the loop to the magnetic flux density at
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a distance of r = 5 · l along the z-axis (ϑ = 0) where the magnetic field is the
strongest. Using equations (1) and (2) this becomes

B̂C

B̂N

=

√
8µ0Î
πl

3µ0l2Î
4π(5l)3

√
4
9

= 250
√
8 ≈ 707.1

Obviously, at a distance of merely r = 5 · l the magnetic flux density has already
dropped to roughly 1/700 of it’s value at the center of the loop. By virtue of (5)
this also applies to the equivalent signal levels. The reason for this steep decline is
the 1/r3 dependence of the magnetic near-field as can be seen from equation (2).
The conclusion here is, that as far as interference with other receivers is concerned
the big loop can be considered “safe” if used in a single-family house. It can,
however, not be deemed safe for apartment use since other receivers behind walls
or ceilings might be too close to the loop.

Small Loop With Receiver In The Near-Field Region

We will now turn our attention to small loops with a side length of much less
than 1 meter. With these loops, the receiver is typically located outside the loop,
preferably along the z-axis (ϑ = 0) since this is the region in space with the
strongest B-field from the loop. Let’s look at a small square loop with a side
length of l = 15cm and the receiver located at a distance of r = 1m on the z-axis.
Using these values in equation (2) we obtain by virtue of equation (5)

σ = 3 · 108m
s

12.56637 · 10−7 Vs
Am

2π

(0.15m)2

(1m)3
· Î = 1.35

V

Am
· Î

for the equivalent signal level provided to the receiver. Again, our required signal
level range is between 3000µV/m and 15000µV/m. The RF current amplitudes
Î in the loop therefore need to be in the range from 2.2mA to 11.1mA.

With these results we can now calculate the total radiated power of this small
loop. Again, from equation (4) it follows that

P =
4

3
π3 · 12.56637 · 10−7 Vs

Am
· 3 · 108m

s

(
l

λ

)4

Î2 = 15.585 · 103V
A

(
l

λ

)4

Î2

Inserting l = 0.15m and λ = 200m then yields

P = 4.93 · 10−9V

A
· Î2

From which it follows that the total radiated power for the above RF current
amplitudes Î does not exceed 0.61pW. This, again, is neglectable for all practical
purposes.
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Let’s now estimate possible interference with other receivers in the near-field
range of the small loop. As pointed out before, from equation (2) it immediately
follows that the magnetic flux density decays over distance according to 1/r3.
Therefore, by increasing the distance from 1m to 3m from the loop, the equivalent
signal level will drop by a factor of 27. Increasing the distance to 5m, the signal
level will be decreased by a factor of 125. The conclusion here is that the small
loop, as far as interference goes, is relatively safe to use even in an apartment
building, provided that the location of the loop is chosen to be reasonably far
away from inter-apartment walls and ceilings.

Providing Well Defined Signal Levels To A Receiver

As has become clear by now, it is crucial to measure and adjust the amplitude
of the RF current in the loop. This is most easily accomplished by connecting a
resistor in series with the loop and measuring the RF voltage drop with a high
impedance device. Typically, one would use an oscilloscope with a 10x or even
100x voltage divider probe to also keep the input capacitance as low as possible.
An example schematic of such a setup is given in figure 4

V

LOOP

Figure 4: Setup to measure the RF current in the loop

It should be pointed out that if the loop antenna is driven by a voltage source, the
RF current in the loop will not only depend on the voltage provided to the loop
by the RF generator, but also on the properties of the receiver and the frequency
the receiver is tuned to. This is all due to the fact that the magnetic coupling
used here between the loop transmitter antenna and the receiver is always recip-
rocal. The RF current in the receiver’s magnetic antenna (that typically serves
as the inductor of it’s input tuned circuit) will also induce a voltage into the loop
transmitter antenna adding to the voltage of the RF generator. Hence, tuning
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the receiver will alter the RF current in the transmitter loop and therefore also
the equivalent signal level provided to the receiver. This influence will be small
for a loose coupling between the loop and the receiver. However, it might still be
necessary to monitor the RF current in the transmitter loop and adjust the RF
generator output accordingly while tuning the receiver. Bearing this in mind and
using appropriate methods to measure the amplitude of the RF current in the
transmitter loop, one is able to provide well defined signal levels to a receiver.
This makes it possible to perform e.g. experiments on receiver sensitivity.

Another application is the very cost-efficient approximate measurement of noise
levels in the AM bands. For this task, one would typically use an AM receiver
with a high RF/IF amplification factor, controlled by an automatic gain control
circuit. For general noise measurements, this receiver is tuned to an “empty”
frequency so that only audio frequency noise detected from the RF noise being
received can be heard from the speaker. For this purpose the receiver must
not have an automatic mute feature or it must be turned off. The AM home
transmitter is then switched on and the signal level is increased until it’s audio
signal starts to emerge from the noise floor and can be heard from the speaker.
The equivalent signal level provided by the home AM transmitter at this point
is then a rough measure of the RF noise at this particular frequency. In order
to measure the noise level of a specific RF noise source (e.g. a nearby switched
mode power supply unit) one would tune the receiver to this noise source and see
what transmitter signal level it takes to overcome the hum or buzz that can be
heard from this specific noise source on the receiver.

Estimating The Input Power Needed By The Loop

By now, we know the magnitude of the RF currents in the loop necessary to
provide reasonable signal levels to a receiver. What we don’t yet know is the
output power a signal generator driving the loop needs to have. Fortunately,
estimating the power necessary to drive the loop with the RF current amplitudes
given in the previous sections is quite simple. The power provided by the signal
generator is equal to the power dissipated in the loop. The power dissipation of
the loop is the sum of the power radiated by the loop, the power drawn by the
receiver due to magnetic coupling and the losses in the wire the loop is made
of. Since the power radiated by the loop is typically in the picowatt range it can
certainly be neglected. The power drawn by the receiver is typically in the lower
nanowatt range (refer to appendix A) and can also be neglected against the losses
in the loop wire. We are therefore left with the task of calculating the power loss
in the loop wire.

If the inductance of the loop is compensated by a (lossless) capacitance and the
resulting circuit is operated at the resonant frequency ω0, the Q-factor of this
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tuned circuit and therefore the loop is [10]

Q =
ω0L

R
(6)

where L is the inductance of the loop and R is the equivalent (series) loss resis-
tance. Since the loss resistance is ohmic, it’s power dissipation PR is

PR = I2RMS ·R =
1

2
Î2 ·R

since IRMS = 1√
2
Î. Solving (6) for R and using the result in the above equation

yields:

PR =
1

2
Î2 · ω0L

Q

The inductance of the loop varies with it’s size and the wire gauge used. To get a
rough idea of the magnitude of Pd we’ll use L = 10µH. The Q-factor is assumed
to be Q = 60 for a resonant frequency of f = 600kHz. The power dissipated is
then

PR =
1

2
Î2 ·

2π · 600 · 103 1
s
· 10 · 10−6H

60
= Î2 · 0.31V

A
(7)

since the SI inductance unit Henry [H] can be given as [11]

1H = 1
Vs

A

Substituting the RF current amplitudes Î from the previous sections in equation
(7) we obtain a power dissipation of not more than 40µW. Hence, the signal
generator driving the loop will typically have to provide output power in the
lower microwatt range.
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Appendix A: Derivation Of Previously Used For-

mulas

Maxwell’s Equations

The behavior of electric and magnetic fields in a vacuum and in good approxi-
mation also in air is governed by the following partial differential equations [2]

∇ · E⃗(r⃗, t) =
1

ϵ0
ρ(r⃗, t)

∇ · B⃗(r⃗, t) = 0

∇× E⃗(r⃗, t) = − ∂

∂t
B⃗(r⃗, t)

∇× B⃗(r⃗, t) = µ0j⃗(r⃗, t) + µ0ϵ0
∂

∂t
E⃗(r⃗, t)

commonly known as Maxwell’s equations. For an explanation of the variables
used see appendix B. The speed of light c in a vacuum and in good approximation
also in air used later on is determined by µ0 and ϵ0 according to

c =
1

√
µ0ϵ0

Maxwell’s equations allow for the introduction of a scalar potential Φ(r⃗, t) and a

vector potential A⃗(r⃗, t) from which the electric field can be calculated as

E⃗(r⃗, t) = − ∂

∂t
A⃗(r⃗, t)−∇Φ(r⃗, t) (8)

and the magnetic field is given by

B⃗(r⃗, t) = ∇× A⃗(r⃗, t) (9)

It should be noted that Φ(r⃗, t) and A⃗(r⃗, t) can be altered in such ways that
the electric and magnetic fields calculated from them do not change. These
alterations are called gauge transformations. By choosing the Lorentz gauge
transformation given by

∇ · A⃗(r⃗, t) + 1

c2
∂

∂t
Φ(r⃗, t) = 0

we obtain two uncoupled inhomogeneous wave equations for the scalar and vector
potential of the form
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∆Φ(r⃗, t)− 1

c2
∂2

∂t2
Φ(r⃗, t) = − 1

ϵ0
ρ(r⃗, t)

∆A⃗(r⃗, t)− 1

c2
∂2

∂t2
A⃗(r⃗, t) = −µ0j⃗(r⃗, t)

The general solution of the above wave equations is given by the volume integrals

Φ(r⃗, t) =
1

4πϵ0

∫
dV ′ ρ(r⃗

′, t− 1
c
|r⃗ − r⃗′|)

|r⃗ − r⃗′|
(10)

and

A⃗(r⃗, t) =
µ0

4π

∫
dV ′ j⃗(r⃗

′, t− 1
c
|r⃗ − r⃗′|)

|r⃗ − r⃗′|
(11)

A detailed explanation and rigorous derivation of all this can be found in most
text books on electrodynamics, e.g. in [1].

First Order Approximation Of The Vector Potential

In general, there will be no closed form expression for the volume integrals above.
However, our chances of finding a closed-form solution will rise if we are dealing
with a charge density ρ(r⃗, t) and a current density j⃗(r⃗, t) limited to a small region
in space and are looking at points r⃗ sufficiently far away from this region. For
convenience we choose the origin of our coordinate system to be within this small
region. We then have |r⃗′| ≪ |r⃗| and are able to do a series expansion up to the
first order of the integrands in the above volume integrals. This results in [1]

A⃗(r⃗, t) =
µ0

4π

1

r
A⃗1(r⃗, t) +

µ0

4π

(
1

r3
+

1

cr2
∂

∂t

)
A⃗2(r⃗, t) (12)

where

A⃗1(r⃗, t) =

∫
dV ′ j⃗(r⃗′, t− r/c) (13)

and

A⃗2(r⃗, t) =

∫
dV ′ (r⃗ · r⃗′) j⃗(r⃗′, t− r/c) (14)

with r = |r⃗| denoting the distance from the origin of or coordinate system and
therefore the distance from the aforementioned small region in space with a non-
vanishing charge and current density.
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The Vector Potential Of The Loop In First Order Approx-
imation

We’ll now apply the above formulas to the loop antenna described earlier. Since
we assume the wire of the loop to be very thin, i.e. the diameter of the wire is very
small compared to the dimensions of the loop we can approximate the current
density with Dirac delta functions δ(x− x0) having the well known properties

δ(x− x0) = 0 ; x ̸= x0

and ∫ +∞

−∞
δ(x− x0)dx = 1

The position vector r⃗ in this cartesian coordinate system can be expressed as

r⃗ =

 x
y
z


with it’s length given by

|r⃗| = r =
√

x2 + y2 + z2

Similar, the current density vector in cartesian coordinates is

j⃗(r⃗, t) =

 jx(x, y, z, t)
jy(x, y, z, t)
jz(x, y, z, t)


Since the total length of the wire making up the loop is assumed to be considerably
smaller than λ/4 there is an approximately uniform current I(t) in the loop. The
components of the current density vector are therefore

jx(x, y, z, t) =

{
I(t)δ(z)

(
δ(y + 1

2
y0)− δ(y − 1

2
y0)

)
;−x0

2
≤ x ≤ x0

2

0 ; else

jy(x, y, z, t) =

{
I(t)δ(z)

(
δ(x− 1

2
x0)− δ(x+ 1

2
x0)

)
;−y0

2
< y < y0

2

0 ; else

jz(x, y, z, t) = 0

Substituting x, y, z, t with x′, y′, z′, t − r/c in (13) and (14) and performing the
integration then yields
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A⃗1(r⃗, t) =

 0
0
0


and

A⃗2(r⃗, t) = I(t− r/c)x0y0

 −y
x
0


Using these results in (12) gives

A⃗(r⃗, t) =
µ0a

4π

(
1

r3
+

1

cr2
∂

∂t

)
I(t− r/c)

 −y
x
0

 (15)

for the vector potential A⃗(r⃗, t) for positions sufficiently far away from the loop.
In the above equation the area covered by the loop has been denoted by a = x0y0.
It should be noted that a loop consisting of several turns of wire close together
on the same frame can also be described by the above vector potential if the loop
current I is replaced by the product of the number of turns n and the current in
the wire I. In this case, it is the total length of the wire that must be considerably
smaller than λ/4 to have an approximately uniform current in the loop.

It it worth mentioning that the previous approximation where we assume the loop
to be limited to a relatively small region in space and look at positions sufficiently
far away from the loop has one immediate effect: The shape of the loop does not
affect the vector potential and hence the E- and B-fields. Only the area a covered
by the loop matters.

Starting with the above expression we can develop further approximations valid
for r ≪ λ/2π respectively r ≫ λ/2π. These approximations are called near-field
respectively far-field approximation. We first look at a periodic function I(t) of
the form

I(t) = Î sin (ωt)

and substitute this into the above expression. Bearing in mind that ω/c = 2π/λ
the result is:

A⃗(r⃗, t) =
µ0a

4π
Î

(
1

r3
sin(ω(t− r/c)) +

2π

λr2
cos(ω(t− r/c))

) −y
x
0


In the above sum, the first term is generated by the 1/r3 factor in equation (15)
while the second term is generated by the differential operator. In case r ≪ λ/2π
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the second term of the above sum can be neglected against the first term and
therefore the differential operator in (15) can be dropped. Furthermore, in this
case I(t− r/c) = I(t− rT/λ) can be approximated by I(t).

If however r ≫ λ/2π, the first term in the above sum can be neglected against the
second one and therefore the 1/r3 factor in (15) can be dropped. Also, I(t− r/c)
stays as it is.

These considerations do not only apply to sinusoidal loop currents I(t) but by
virtue of Fourier’s theorem to any periodic loop current, provided that all physi-
cally relevant harmonics satisfy the aforementioned conditions.

The Near-Field Approximation

We will first look at the region where r ≪ λ/2π. From the above considerations

it follows that the near-field vector potential A⃗N can be written as

A⃗N(r⃗, t) =
µ0a

4π

1

r3
I(t)

 −y
x
0

 (16)

The magnetic flux density B⃗N(r⃗, t) of the near-field is given by (9). The calcula-

tion of the partial derivatives of the components of A⃗N(r⃗, t) is straight forward,
finally yielding

B⃗N(r⃗, t) =
3µ0a

4π
I(t)

1

r5

 xz
yz

−(x2 + y2)

+
µ0a

2π
I(t)

1

r3

 0
0
1


At this point it is useful to switch the coordinate system to the spherical coor-
dinates introduced earlier. Furthermore, we assume that the current I(t) in the
loop is given by

I(t) = Î sin(ωt)

After switching to spherical coordinates, the magnetic flux density B⃗N(r⃗, t) of
the near-field can be expressed as:

B⃗N(r⃗, t) =
3µ0a

4π
Î sin(ωt)

1

r3

 sin(ϑ) cos(φ) cos(ϑ)
sin(ϑ) sin(φ) cos(ϑ)

− sin2(ϑ) + 2
3


For the sake of completeness we shall also calculate the electric near-field although
it is not needed for our purposes here. The E-field is calculated from the scalar
potential Φ(r⃗, t) and the vector potential A⃗(r⃗, t) according to equation (8). Since
we have made the assumption that the resistance of the loop is neglectable (hence
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there is no voltage drop along the loop) and the circumference of the loop is much
smaller than λ/4 (hence the current is uniform) the loop is neutral at every point.
Therefore, ρ(r⃗, t) = 0 and it follows from (10) that

Φ(r⃗, t) = 0

Equation (8) therefore simplifies to

E⃗(r⃗, t) = − ∂

∂t
A⃗(r⃗, t)

Substituting A⃗N(r⃗, t) from (16) then yields

E⃗N(r⃗, t) =
µ0a

4π

1

r3
∂I(t)

∂t

 y
−x
0


Using

I(t) = Î sin(ωt)

in the above equation and switching again to spherical coordinates we finally
obtain

E⃗N(r⃗, t) =
µ0aωÎ

4π

1

r2
cos(ωt)

 sin(ϑ) sin(φ)
− sin(ϑ) cos(φ)

0


The Far-Field Approximation

We will now turn our attention to the region where r ≫ λ/2π. Applying our
previous considerations to equation (15) we obtain

A⃗F (r⃗, t) =
µ0a

4π

1

cr2
∂

∂t
I(t− r/c)

 −y
x
0

 (17)

for the far-field vector potential A⃗F (r⃗, t) of the loop. Again, the E-field is calcu-

lated from the scalar potential Φ(r⃗, t) and the vector potential A⃗(r⃗, t) according
to equation (8). As in the near-field, we again have

Φ(r⃗, t) = 0

and therefore equation (8) simplifies to

E⃗(r⃗, t) = − ∂

∂t
A⃗(r⃗, t)
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Substituting A⃗F (r⃗, t) from (17) then leads to

E⃗F (r⃗, t) = −µ0a

4π

1

cr2
∂2

∂t2
I(t− r/c)

 −y
x
0


If we assume the loop current to be sinusoidal, hence

I(t) = Î sin(ωt)

this yields

E⃗F (r⃗, t) =
µ0aÎω

2

4πc

1

r2
sin(ω(t− r/c))

 −y
x
0

 (18)

Switching again to the spherical coordinates introduced earlier, equation (18)
then turns into

E⃗F (r⃗, t) =
µ0aÎω

2

4πc

1

r
sin(ω(t− r/c))

 − sin(ϑ) sin(φ)
sin(ϑ) cos(φ)

0


From the above expression, the amplitude vector

ˆ⃗
EF (r⃗) of the electric far-field is

immediately recognized to be

ˆ⃗
EF (r⃗) =

µ0aÎω
2

4πc

1

r

 − sin(ϑ) sin(φ)
sin(ϑ) cos(φ)

0


and hence, the scalar amplitude ÊF (r⃗) of the electric far-field can be written as

ÊF (r⃗) = | ˆ⃗EF (r⃗)| =
µ0aÎω

2

4πc

1

r
| sin(ϑ)|

Calculating the magnetic flux density B⃗F (r⃗, t) from the vector potential A⃗F (r⃗, t)
according to (9) is a little more tedious but poses no obstacles. The partial

derivatives of the components of A⃗F (r⃗, t) turn out to be

∂AFz

∂y
=

∂AFz

∂x
= 0

and
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∂AFy

∂z
=

µ0a

4πc
x γ

∂AFx

∂z
= −µ0a

4πc
y γ

∂AFy

∂x
=

µ0a

4πc

(
xα +

1

r2
∂

∂t
I(t− r/c)

)
∂AFx

∂y
= −µ0a

4πc

(
y β +

1

r2
∂

∂t
I(t− r/c)

)
with

α =
∂

∂x

(
1

r2
∂

∂t
I(t− r/c)

)
β =

∂

∂y

(
1

r2
∂

∂t
I(t− r/c)

)
γ =

∂

∂z

(
1

r2
∂

∂t
I(t− r/c)

)
Using I(t) = Î sin(ωt) respectively I(t− r/c) = Î sin(ω(t− r/c)) we obtain

α = Îω

(
−2x

r4
cos(ω(t− r/c)) +

ω

c

x

r3
sin(ω(t− r/c))

)
Since r ≫ λ/2π this can be approximated by

α =
Îω2

c

x

r3
sin(ω(t− r/c))

Calculating β and γ is done in the same way, yielding

β =
Îω2

c

y

r3
sin(ω(t− r/c))

and

γ =
Îω2

c

z

r3
sin(ω(t− r/c))

This results in the following expression for the magnetic flux density B⃗F (r⃗, t) of
the far field of the loop:

B⃗F (r⃗, t) =

 −µ0aÎω2

4πc2
1
r3
sin(ω(t− r/c))xz

−µ0aÎω2

4πc2
1
r3
sin(ω(t− r/c)) yz

µ0aÎω
4πc

(
ω
c

1
r3
sin(ω(t− r/c)) (x2 + y2) + 2

r2
cos(ω(t− r/c))

)
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Switching to spherical coordinates this turns out to be

B⃗F (r⃗, t) =
µ0aÎω

2

4πc2
1

r
sin(ω(t− r/c))

 − sin(ϑ) cos(ϑ) cos(φ)
− sin(ϑ) cos(ϑ) sin(φ)

sin2(ϑ)


where we have again neglected terms exhibiting a 1/r2 dependence against terms
exhibiting a 1/r dependence. From the above equation it is easy to see that the

amplitude vector
ˆ⃗
BF (r⃗) of the magnetic far-field has the form

ˆ⃗
BF (r⃗) =

µ0aÎω
2

4πc2
1

r

 − sin(ϑ) cos(ϑ) cos(φ)
− sin(ϑ) cos(ϑ) sin(φ)

sin2(ϑ)


and the scalar amplitude B̂F (r⃗) of the magnetic far-field is

B̂F (r⃗) =
µ0aÎω

2

4πc2
1

r
| sin(ϑ)|

Comparing the expressions for the amplitude vectors of the E- and B-far-fields

it becomes obvious that the scalar product
ˆ⃗
EF (r⃗) ·

ˆ⃗
BF (r⃗) vanishes for all r⃗. The

amplitude vectors of the E- and B-fields are therefore perpendicular to each other.
Also, the scalar product of the position vector r⃗ with the E-field vector and the
B-field vector vanishes. Therefore they are both perpendicular to an imaginary
line connecting the observer at point r⃗ to the origin where the loop is located.
Furthermore, from comparing the scalar amplitudes, it follows that

ÊF (r⃗) = cB̂F (r⃗)

From those three properties of the amplitude vectors respectively scalar am-
plitudes it follows that an observer in the far-field region sees incoming plane
electromagnetic waves emanating from the loop. We are mostly interested in the
electromagnetic power being radiated by the loop. The radiation power density
is given by the Poynting vector [5]

S⃗(r⃗, t) =
1

µ0

(
E⃗(r⃗, t)× B⃗(r⃗, t)

)
From this and the considerations above, it follows that the Poynting vector in
the far-field always points outwards (away from the origin where the loop is
located) along an imaginary line connecting the observer to the origin. Now that
the direction of the Poynting vector is clear, we can focus on it’s scalar value.
For the plane electromagnetic waves that we have here in the far-field the time
averaged scalar value S(r⃗) is [5]

S(r⃗) =
ϵ0c

2
Ê2

F (r⃗)
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By substituting the expression for ÊF (r⃗) into the above equation and after some
simplifications we arrive at

S(r⃗) =
π2µ0a

2Î2c

2λ4

1

r2
sin2(ϑ)

From this, the total radiated power of the loop P can be calculated. This is
simply done by integrating the flux of the time averaged Poynting vector through
an arbitrary closed surface containing the loop. Of course, the surface must be
entirely in the far-field region. For convenience, we choose the surface to be a
sphere with radius r and center at the origin. We have seen earlier that the
Poynting vector points outwards along an imaginary line connecting the observer
at point r⃗ to the origin. Hence, it is always parallel to the normal vector of the
surface and the flux integral then becomes

P =

∫
S

S(r⃗)dO

Here, dO denotes the scalar surface element. We have chosen a different letter
since S is already taken. In our spherical coordinate system, dO is given by

dO = r2 sin(ϑ)dϑdφ

and by also substituting S(r⃗) the above integral becomes

P =
π2µ0a

2Î2c

2λ4

∫ π

ϑ=0

∫ 2π

φ=0

sin3(ϑ)dϑdφ

Note that r cancels as expected. After performing the integration we end up with
the following fairly simple expression for the total radiated power of the loop:

P =
4

3
π3µ0Î

2c
a2

λ4

Power Dissipation In Lossy Tuned Circuits

A topic not directly related to the electrodynamics of the loop transmitter pre-
sented above is the behavior of the lossy tuned circuit. However, we need to get
an idea of the magnitude of the power dissipated in the first tuned circuit of a
receiver before the first amplification stage since this is the power drawn by the
receiver from the magnetic near-field of the loop.

We turn our attention to the equivalent circuit of a lossy tuned circuit depicted in
figure 5. The losses in the inductor and the capacitor are represented by a series
ohmic loss resistance R. The power dissipated in this loss resistance is given by

Ploss = I2RMS ·R (19)
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UA

L

R

C

Figure 5: Equivalent of a lossy tuned circuit

The voltage URMS at the capacitor (which is the input voltage of the first am-
plification stage in typical receivers) is related to the current IRMS in the circuit
by

IRMS =
URMS

|XC |
where |XC | denotes the absolute value of the reactance of the capacitor. Since
|XC | = 1/ωC the above equation turns into

IRMS =
URMS

1
ωC

= URMS · ωC (20)

The series loss resistance R is related to the Q-factor of the tuned circuit by [10]

Q =
ωL

R

Solving the above equation for R we get

R =
ωL

Q
(21)

Using equations (19), (20) and (21) we can calculate the power dissipation in the
lossy tuned circuit. Note, that it is more intuitive to calculate R and I separately
than combining the above equations into one.

As a typical example, we assume the following parameters: L = 300µH, C =
235pF, hence the resonant frequency is approximately f = 600kHz. The Q-
factor is assumed to be Q = 30. If there is a convenient 2VRMS after RF/IF
amplification available for demodulation and the RF/IF amplification factor is
100, the input voltage at the first stage is 20mVRMS. This is the voltage URMS at
the capacitor. We therefore get from (20)
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IRMS = 20mV · 2π · 600kHz · 235pF ≈ 18µA

and from (21) we get

R =
2π · 600kHz · 300µH

30
≈ 38Ω

Using these results in equation (19) we finally end up with

Ploss ≈ (18µA)2 · 38Ω ≈ 12nW
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Appendix B: Variables And Constants

A note on the terminology of magnetic fields: There is a lot of confusion
regarding the terms used to describe the “magnetic field” and it’s “strength”.
Historically, the term “magnetic field” is used for the H-field, with H and B
in a vacuum being related by B = µ0H. The term “magnetic flux density” is
commonly used to refer to the B-field. Informally and also in some more recent
textbooks, the term ’magnetic field’ is also used to refer to the B-field [6]. Since
in this paper we’re solely using the B-field, we shall also use the terms “magnetic
field” and “magnetic flux density” interchangeably. The magnetic flux density B
is measured in Tesla [T], where

1T = 1
Vs

m2

in SI-units which are used throughout this paper.

List of selected variables and constants:

ω: Angular frequency (ω = 2πf)

ω0: Resonant angular frequency of a tuned circuit (ω0 = 2πf0)

µ0: Magnetic constant, µ0 = 12.56637... · 10−7 Vs
Am

l: Side length of the loop whenever assumed to be square

a: Area of the loop

c: Speed of light in vacuum and approximately also in air, c ≈ 3 · 108 m
s

λ: Wavelength, λ = c
f
= 2πc

ω

Î: Amplitude of current I(t)

IRMS: Root mean square of current I(t)

R: Resistance (ohmic)

L: Inductance

ϵ0: Electric constant, ϵ0 = 8.854187... · 10−12 As
Vm

ρ: Electric charge density

j⃗: Electric current density
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