Chapter 21

CIRCUIT ELEMENTS OF LARGER CROSS SECTIONS
WITH PARALLEL AXES

Solenoid and Circular Filament.

Let n; = the winding density of the solenoid,
A = radius of solenoid,
b = axial length of solenoid,
a = radius of the circular filament,

p = distance between axes,
w = distance between centers measured along the axes (see Fig. 56).

Placing
P N b 4 b
== U - = - - y
: 2 ’ 2 6
Tl”“ﬂz'}‘dz: 7'2=\'Pz+d22: i
dl d2 8
Ml = 7, M2 = T,
r1 T2 2r
it 1s found that ;
. M =0 mlnﬂazAﬂn [-YE - K-‘-] (182)
o ! r22 ?‘12 ’ Fia. 66

 in which V; and V; are found by substituting, respectively, us, 72 and u;, 71,
~ for u, r in the expression

3 A*Ps(pn) b A*Ps(un) 35 A°Pr(u)
g 47" 2 m 8 “ " 64" = 18 g (183)

The general term of this series is
3.5:7---(2n + 1 AN*" Py,
(1) 2 - (2n + ZK,;(—-—-) an+1(1)
7 4.6.8.--(2n + 2) r m
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The factors K;, K3, and Kz may be interpolated from Table 47 as a func-
2

: : . : . P
tion of the ratio o = — . The zonal harmonic functions —~t5~ )

A%’ U
obtained from Auxiliary Table 3 (page 238).

may be

TABLE 47. VALUES oF K, N FORMULAS (183) anp (185)
Interpolation may be avoided by using the following formulas directly:
Ki =1+ a? K3 = 1 4 6a® + 6a* + af
Ko = 1 4 3a® + o, Ki =1 4 10a® + 20at 4 10a° 4+ 8.
In general K, = F(—n — 1, —n, 2, a*), where F is the hypergeometric series.

o’ K1 K3 Ay Ag K4 Ay Ag Az
0 1.0 1.000 1.000
601 1210
0.1 1.1 1.661 126 2.210 462
787 1672 62
. 2 1.2 2.448 132 3.882 524
019 2196 | 67
.3 1.3 3.367 138 6.078 691
1067 2787 69
.4 1.4 4.424 144 8.8066 660
1201 3447 70
0.5 1.6 5.6256 150 12.312 730
13561 4177 73
0 1.6 6.976 156 16.490 803
1607 4980 76
i 1.7 8.483 162 | 21.470 879
1669 | 58569 78
.8 1.8 10.152 168 27.330 067
1837 6816 81
0.9 1.9 11.989 174 | 34.146 1038
| 2011 7854
1.0 2.0 14 .000 42 .000
Ay = 0.1 Ao = 2 Ag = 0 Ag = 2.7

= e T A Lo L gttt

By applying the principle of interchange of lengths, it is evident that the
mutual inductance of a solenoid of radius a, length b, and a circular filament
of radius A is the same as the mutual inductance of the solenoid of radius ,4
length b, and the circular filament of radius a in Fig. 56, provided p and w
are the same in both cases. Therefore, the general formula (182) may be
used, whichever element has the larger radius A.
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Example 76:

= A = 10 em,, u = 20 cm.,
b = 12, p = 20,
| 2
From Table 47, for a* = i% = 1, there are found K, = 2, Ks = 5, K3 = 14. From
the given data, |
ds = 14, dy = 20,
| 1'22 = H06 y r;'*’ == 1076,
up = 0.57348, py = 0.79263,
and from Auxiliary Table 3
Palw) _ _ .70, Pa(u) _ 0.0706,
K2 M1
Pe(bs) _ _ 01523, Polu) _ o514,
2 K1
Pam) _ o 5561, Prlw) _ _ ¢.2656.
B2 M1

Using these values we find in (183)
Vs = 0.57348(1 4 0.17064 — 0.01340 — 0.02011)

Va/rst = 0.6521 + 596 = 0.0010942,
V, = 0.79263(1 — 0.00984 — 0.01387 -+ 0.00163)
Vi/rid = 0.7761 + 1076 = 0.0007204,

o that
M = 0.00172(100)2n,1(0.0003738)
= (,03689n; p,h.
. | Az
The general formula (183) converges well only if 3 is small, and further-
n

more, the mutual inductance is given by the difference of two terms each of
which has to be calculated with a greater degree of precision than is required
i1 the result. Unless the distances r; and 7, are considerably larger than the
sum of the radii, the accuracy may not be sufficient.

In such cases the Rayleigh quadrature formula (page 11), or some other
method of averaging may have to be applied. For equal radii this is not diffi-
cult, as may be illustrated for the case treated in example 76.

Example 77: The degree of convergence in the_preceding example leaves some-
thing to be desired, especially with respect to the calculation of Vi. To test the
accurncy of the result, suppose circular filaments to be selected at equal intervals
along the length of the solenoid (Fig. 56), in the positions 00/, 11’ - - - 66’. The mutual
induetance of each of theso filaments and the given circular filament will be calculated.
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Since the radii are all the same, Table 43 for equal circles with parallel axes may be
employed. The main results of the calculation follow:

Circle | o0’ l 11’ 22/ 33’ 44’ 5’ l 66’

i oy 5 e ke ool LAl TR o i —— [ o e

dn 26.0 ] 24.0 22.0 20.0 18.0 16.0 14.0

x 110760 |976.0  |8840  [800.0  |724.0 6560 | 596.0
%—é 0.60000| 0.64018| 0.67266| 0.70710| 0.74330| 0.78088) 0.81922
T
Bp = f—ﬁ 0.79300! 0.76823| 0.73995| 0.70710] 0.66896| 0.62470| 0.57346
: 24
The values of IF are interpolated from Table 43 for these values of . and u, and
]
C oy : ] te
the values of f from Table 17 for coaxial circles using E,M-fﬂ - = 24
distance 7y
I 00’ [ 11/ 22/ l 33’ 44/ b5’ 66’
S e i R
I 0.6197 | 0.58562 0.5471 0.6040 0.4617 0.3885 0.3127
1000f 04386 | 0.4961 | 0.5621 | 0.6362 | 0.7187 | 0.8091 | 0.9060
10007°f 0.2718 0.3075 0.3075 0.3206 0.3248 0.3143 0.2833
1

The mutual inductance m of each cirele with the given circular filament is AFfny dz
and the total desired mutual inductance is found by integrating this over the length
of thesolenoid. The integration may be obtained by S8impson’s rule, using these calcu-
lated values of the integrand. The interval of integration is § of 12, or 2 ¢m.

Even Odd Extremes
0.2718 0.2903 0.2718 2 X 11874 = 3.3748
0.3075 0.3206 0.2833 4 % 09252 = 3.7008
0.3248 0.3143 - -
0.2833 e 0.55651 = Sum 6.0756
e 0.9252 = Sum —0.5551
1.1874 = Bum

5.562056

times % of 2 cm. 3.6804
M = 0.001(10)(3.6804)n; = 0.036804n, wh.

This value is more accurate than that caleulated by formula (182). This example
is & favorable case for this method, since the calculated points differ only slowly.
The increase of m, due to decreasing distance between circles, is offset by the decrcase
in m, due to decreasing u.
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For this case also the Rayleigh formula is favorable. Tor this problem this becomes
M = }(4msz + moo + megs) (number of turns)
= (.3061(0.001)(10)(12n1)
= (),036732n; uh.

This is nearly as accurate as the preceding value and requires the calculation of only
three circles, whereas seven were necessary for the other,

If the radii of the solenoid and circular filament are not equal, the matter is com-

plicated. For values not very different, instead of the parameter -2;{1- , the ratio of the
mean diameter of coil and cirele to r, may be used with a moderate accuracy. Other-
wise, the required mutual inductances of the unequal circles with parallel axes that

enter in the calculation should be obtained by the graphical method described on
page 187.

Solenoids with Parallel Axes. Iixpressions for the mutual inductance
of single-layer coils with parallel axes have been given by Dwight * and Purs-
sell and by Clem.® It is easy to show that the
following formula may be derived from these
and it is in an especially convenient form for
numerical calculations. |

~ The two coils of radii @ and A are shown in
Fig. 6§7. Their lengths x and 1 are taken as
equal to the number of turns times the pitch of

the windings. Accordingly, the winding densi-

: : Ny
ties n; and n, are, respectively, n; = and

T
Ny
ng = 7.
Let p = distance between the axes, and calculate the four distances d,
between the ends of the coils shown in Fig. 57.

T -+ T —
_ de =
¢ (2l) ’ u+( 2l)’
[ — 2 r 4 I
d .
“+( 2 ) ; u+( 2 )

in which » = axial distance between the centers of the coils (see Fig. 57).
Trom these distances are to be calculated the four radii wvectors
A

Py = Vv p® -+ d,? and the four cosines p, = —.
Ta

d;

ds
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Then,
M = 0.0017%*a®A%n; n, [ ﬂﬂﬂﬂﬂ + —-] ph, (184)

in which
X [1 1IA?ZAEJF’( )+1K A*P(p)
n 4 lrnz By'ﬂ 8 2?.“4 4 n
AS 7 AS

_— —-"Knga(}tn) +"]'-"2"§K4;:P8(Fn) "'"'"']' (185)

22
The constants K;, Ks, K3, and K, are functions of o® = yE and may be

calculated from the formulas
Ky =1+ o, Ky = 1+ 8o° + o,
Kg = 1+5a2+ea*+aﬂ, Ky = 1+ 10a® + 20a* + 10a° + o,

or interpolated from Table 47. The zonal harmonics Pg,(k,) may be inter-
polated from Auxiliary Table 3 (page 238).

If the coils are overlapping, some of the distances d,, may be regarded as
negatwe This does not, however, affect the values of r, and the zonal har-
monics Po,(—u) = Paa(u), so that the signs of the d, are immaterial in the

formula for the mutual inductance.
For the special case that the coils have their bases in 1 the same plane

dy = —2 dg = 0,
dg=x(@—1), d=1§
and for equal coils resting on the same plane
| r = |, ds = 0,

dl == d4 = Ty 633 == 0;
and formula (184) becomes

X, X
M = 0.002x%a2A%nny [-—;i - -;3] sh.  (186)
1 3

2
The convergence of (185) is better the smaller the values of (:—'4-) , and

each r, must be greater than (A + a). The principle of interchange of the
lengths holds, but since the d,, 7, and p, are thereby unchanged, no im-
provement of the convergence is thereby obtained.
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=

Formula (184) is of such a form that the individual terms have to be cal-
culated to a higher degree of accuracy than is attainable in the result. This
disadvantage is especially acute for distant coils, but for such cases the con-
vergence of formula (185) is good.

The writer finds that for the special case of loosely coupled coils of equal
radii 4 and equal length B the following series formula may be used:

At 2
£l [Py(u) + B°Py(u) + B*Pe(n) + B°Ps(n) +- -

M = 0.002x%

1
— ~ — [6P4(u) + 168°Pg(n) + 288*Pg(n) +- - -]

2 R?
25 A* 2
+ —— {3Pg(p) + 148°Pg(p) +- -]
8 R
245 A°
T 1
- Ra{Pﬂ(“)‘l‘ } <++-] uh, (187)

in which the distance between the axes is assumed to be p and the distance
between centers B = V p? + u?. The argument of the zonal harmonics is

po= = , and B = g . The convergence is better the smaller the space ratios
% and S.

Example 78: The mutual inductance of two equal single-layer coils of radii A = 5,
length = = 10, and winding density 20 turns per cm. will be calculated by formula

(184). The distance between the axes will be taken a8 p = 10 and the axial distance

between their nearer ends as 5 cm. That is, u = 15.
Then

d; = B, de = ds = 15, dy = 25,
r? = 125, ry? = gt = 325, red = 725.
Since the radii are equal, Table 47 gives for a® = 1,
Ki=2 Kg=105, K;=14, K4= 42.
We find also
4y = 0.44721, pg = pa = 0.83205, pq = 0.92848,

and for these values Auxiliary Table 3 gives

Pauy) = —0.1999, Pa(us) = 0.5385, Py = 07931
Pa(u) = —0.2000, Pu(us) = —0.1243, | Pi(u) = 0.3936,
Pe(uy) =  0.3280, Po(pg) = —0.4147, Pe(ua) = —0.0366.

PH(FI) = w(,2000,
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The series for the X, are

X’i Xﬂ e .Xa X:;l,
1.01099 1 1
—0.00500 —0.02071 —0.01367
—0.00287 —0.00046 +0.00029
—0.00072 4-0.00021 —0.00002
1.01139 0.97904 0.98662
X _ 0.090461 Xs _ 0,054307
1 )
L4 0.036642
T4

0.127103 — 0.108614 = ().018489
M = 0.0017%(25)%(20)%(0.018489) = 45.62 ph.

In order to obtain & three figure accuracy in the result, it is necessary that the
separate terms shall be accurate to the fourth significant figure. The value of X;
should be calculated to include one more term to assure this accuracy.

Example 79: To illustrate the use of formula (187) the solution will be found for
the case of two equal loosely coupled coils for which the given constants are

A=5; p=15, m==20,
B = §, u = 10, ng = 20,
The distance between centers is B = /15> + 10? = 4/325. The space ratios are

-2l mdL=—— Th | harmonics f Y =
R 395 R ‘\/3-’""‘25 . ¢ Zonali narmonics ior u = R _\/“3“5“5

0.55470, taken from Auxiliary Table 3, are
Pqy(u) = —0.0385, Pg(u) = 0.2634,
Py(p) = —0.3640, Pg(u) = 0.0871.

It will be necessary to obtain a more precise value of Py(x) by the defining relation
Py(u) = %(3u® — 1), which leads to the value —0.0384615.

The four terms in the brackets of formula (187) yield for this case —0.06486
4 0.07176 -+ 0.01635 — 0.00121 = 0.02205. '

Substituting in formula (187), M = 0.4643 uh.

For this case, formula (184) requires each of the quantities X to be calculated
accurately to seven significant figures to give a four figure accuracy in the result. The
series given for the X, are not sufficiently convergent to allow this without further
terms. The calculated M comes out 0.472 ph.

A further method of attack, applicable to loosely coupled solenoids of un-
equal radii, where formula (187) cannot be used, is to integrate formula (182)
for solenoid and eccentric circle over one of the solenoids. Making the cal-
culation for a number of equally spaced turns, the integration may be ac-
complished mechanically.

To illustrate the process the solution may be found for the problem just
considered. Seven circles, a, b, ¢, -+ g equally spaced axially along one
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of the coils are taken. The mutual inductance m of each circle and the other
solenoid is caleulated by formula (182) for solenoid and circle with parallel
axes. The calculated mutual inductances in abhenrys are —38.26, —18.23,
—3.29, 9.10, 18.07, 24.85, and 30.79. The distance between consecutive cir-
cles is § em. Summing by Simpson’s rule and multiplying by the winding
density ne = 20, the value M = 0.4721 ph is found, which agrees with the
value by (187) to about 1 per cent.

Example 80: The last described method is more accurate for still more loosely
coupled coils. Assume two equal coils with

A = 2.5, u = 0, ny = 25,
B =}, p = 25, ne = 2.
2
Here B = 25, %‘i = (.01, 2 = 0.04, and 4 = 0. The zonal harmonics for this value,

taken from Auxiliary Table 3, are
Pa(p) = —0.5, Py(u) = 0.375, Py(u) = —0.3125, Py(p) = 0.2734.

By (187)

1 = 0,002, 28)}(2.5)40.04)
| 25

= —(),38159 ph.

The convergence of (187) is excellent.

To apply the Rayleigh quadrature method, caleulate by formula (182) the mutual
inductance of one solenoid on the three circles taken at the ends of the other solenoid
and at its midsection. I'rom the symmetry of this arrangement, the value will be the
game for each end section:

[—0.48448 — 0.01037 — 0.00002]

u=2.5, d2=0, dy = 5.
pe = 0, p1 = 0.19611,
The zonal harmonics Pa,1(u) are all zero for u = 0, so that the value of ;{% in (182) is
2

zero. The calculated value of m, for the end circles comes out —2.968 abhenrys. For
the circle at the midsection

dg = --2.5, d1 = 2.5, Mg = ~—Hi.

Since Pgns1(—p1) = — Pansi(1), the two terms of (182) give —2 f; , and the mutual
1

inductance m, is —3.107 abhenrys.
The Rayleigh formula for this case gives

M= -%3 (4m, + 2m,)107® uh

125 [4(--3.107) + 2(—2.968)
1000 6

The value obtained by multiplying the value of the mutual for the mideircle by N is
—0.386, which is an approximation that may often be sufficient,

] = —0.3826 uh.
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Solenoids with Parallel Axes Having Zero Mutual Inductance. The
preceding examples have included cases where the mutual inductance may
have either sign, which suggests the possibility of placing the coils so as to
have zero mutual inductance. Such an arrangement is used in the familiar
case of the coils in & neutrodyne circuit. '

To determine how the ¢oils should be placed we may employ the series
formula (187) for equal solenoids. Imposing the condition that M = 0, the

. U . . .
corresponding value of u = R may be found by successive approximations.

This is readily accomplished for given numerical data making use of Auxiliary
Table 3 for values of the zonal harmonics.

T : , 1 1
Example 81: Assume coil dimensions and spacing such that § = X % =7 that
n

is, the coil length is one half of the diameter, and the distance between centers is four
times the length of the coil.
Substituting these values in the series of formula (187), the necessary condition

for zero mutual inductance is

Po(u) — 3Ps(u) + v83sPe(p) + woosle(n) = 0.

Using the first term and Auxiliary Table 3 it is evident that x must be about 0.55.
Calculating the above sum for several values of p near 0.55 the sum is found to be as

follows:
v Sum
0.53 —0.0337
b4 —(0,0161
.5b +0.0017
0.56 0.0196.

The value of u = 0.549 is, closely, the solution. Denoting by 6 the angle between
the line joining the coil centers and the direction of the axes, this value of u corre-
sponds to 6 = 56° 42,

If the coil is very short, axially, 8 = 0, and the corresponding value of x is 0.533
or 8 = 57°48’. This is checked by the use of Table 43 for eccentric circles, from

which the value u = 0.536 is found.
A

For longer coils, with 8 = 4§, with the same value of 7 88 before, it works out that
u = 0,561, 0 = 55° 53’.
For coils far apart so that 8 = 0 and 4 == (), the limiting value is g = 0.577, or

R
§ = 54° 44’,
It is evident, therefore, that except for coils close together, the condition for zero
mutual inductance is not very critical.

Solenoid and Coil of Rectangular Cross Section with Parallel Axes.
A general formula, derived from one by Dwight and Purssell,” is the follow-
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ing, in which the nomenclature is that of Fig. 58, and n; is the winding den-
sity of the solenoid and N3 the total number of turns on the coil.

NolY Y Y Y
Muo,mlwﬁAﬂaL’nli[- = ?----—f-+—-i] uh, (188)
b r1 2 T3 T4
in which |
142 a? |
Yy = tz*z;;(ta'{-zgﬁ)f’a(um)
1 A% a? at
+8rm4 52-!—32;?344—:1*;15 Py(pm)
5A5(z 6%t 485, asr,)P( )
Mj‘mﬂ 2 A2 ": A4 3 Aﬁ 3 ﬂ‘um
+ Aa(z 105, r0 105, + 5, )P( )
128 rm3 2 Az 4 A4tﬂ AB 8 AB 10 8\ Mm
— (189)
with
"mz = dmz + Pz; Bm = d”‘,
m
b+ B B —-b
(), e (5.
b — B | B+4+b
d2=u+( 9 )_, d4=u‘+(- 9 )'

The coefficients &5, 14, {5, ctc., are functions of the ratio r of the thickness
of the coil and its mean radius and may be obtained from Table 48, whero
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