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Abstract

While integrated circuit (IC) amplifiers are mostly used with RC and crystal oscillators,
they can also be used as a feedback device for LC oscillators. However, two basic
problems of practical LC oscillators, the development of parasitic oscillations with
frequencies above the intended oscillation frequency range under certain conditions
and a deviation of the actual oscillation frequency from the natural frequency ω0 =
1/
√
LC of the LC tank often become more pronounced when using integrated circuit

amplifiers instead of one single active component. This is mostly because integrated
circuit amplifiers often exhibit an appreciable delay between input and output signal
even at relatively low frequencies. In this paper, we shall investigate both, parasitic
oscillations and frequency deviation, using a generic non-ideal LC oscillator model.

A Generic LC-Oscillator With IC Amplifier

We shall base our analysis on a generic LC oscillator using a differential voltage
amplifier as shown in figure 1. The LC tank is modeled by an ideal inductor L,
an ideal capacitor C and a parallel loss resistance RP that subsumes the losses
occurring in the inductor and the capacitor. The feedback device “FB” is a
generic differential amplifier, delivering it’s output voltage Uf back into the LC
tank via Rf .

In the ideal case, this differential amplifier exhibits neither a delay time between
input and output nor is it’s amplification behavior frequency dependent. How-
ever, integrated circuit amplifiers, due to the relatively large number of internal
transistor systems typically have an appreciable delay between input and output
signal even at relatively low frequencies, resulting in a phase shift that can easily
reach values of 360◦ or beyond. In this paper we shall therefore explicitly focus on
the non-ideal case that involves an appreciable phase shift as well as a frequency
dependent amplification behavior with a roll-off at higher frequencies.
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Figure 1: Generic LC oscillator

Linear Approach

A basic understanding of the behavior of the oscillator with phase shifted feed-
back can be obtained by going below the oscillation threshold and analyzing the
response of the feedback device when driven externally by a small sinusoidal input
voltage using complex phasors. We shall therefore, for now, remove the LC tank
from the circuit while keeping it’s parallel loss resistance RP in place and take a
look at the input current IIN resulting from a driving voltage UIN as depicted in
figure 2.
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Figure 2: Feedback device in linear phasor analysis

Using Kirchhoff’s circuit laws [1], we obtain

URf
+ UIN = Uf and IIN + If = IRP
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In the linear approach, the feedback voltage is related to the input voltage by
Uf = aUIN where a is the small signal amplification factor of the feedback device.
Using Ohm’s law, these equations yield

IIN =

(
1

RP

+
1

Rf

− a

Rf

)
UIN

from which the input impedance follows to be

ZIN =

(
1

RP

+
1

Rf

− a

Rf

)−1
= RP ‖Rf ‖

−Rf

a

where Z1‖Z2 denotes impedances connected in parallel. The fact that Rf con-
tributes to the input impedance can easily be understood by bearing in mind
that the feedback device is assumed to have zero output impedance, hence RP

and Rf are connected in parallel.

As expected, positive feedback (a > 0) creates a negative virtual parallel loss
resistance −Rf/a. If this negative resistance over-compensates the losses in the
tank, i.e.

1

RP

+
1

Rf

− a

Rf

< 0

the circuit will start to oscillate. We can now easily introduce a phase shift ϕ
between input and output voltage of the feedback device by using a complex
amplification factor of the form ae−jϕ. By putting a negative sign into the ex-
ponent, we imply that the output lags behind the input and we have ϕ > 0
for the remainder of this paper. Replacing a with ae−jϕ in the above equations
immediately yields

ZIN =

(
1

RP

+
1

Rf

− a cosϕ

Rf

+ j
a sinϕ

Rf

)−1
= RP ‖Rf ‖

−Rf

a cosϕ
‖ −jRf

a sinϕ

Obviously, a phase shift ϕ occurring in the feedback device has two effects: First,
the additional parallel resistance −Rf/a cosϕ introduced by the feedback device
now depends on the phase shift ϕ and can also assume positive values, i.e. the
feedback device delivers negative feedback into the tank causing damping. Sec-
ond, a virtual parallel reactance −jRf/a sinϕ is introduced into the tank causing
detuning, i.e. the actual oscillation frequency deviates from the natural frequency
ω0 = 1/

√
LC of the tank. In case of sinϕ > 0 the tank will be detuned towards

lower frequencies (virtual parallel capacitance) while in case of sinϕ < 0 the tank
will be detuned towards higher frequencies (virtual parallel inductance).

Let us now focus on the oscillation conditions of the circuit as predicted by the
linear approach. From the above equation for ZIN the oscillation condition is
found to be
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In all practical feedback devices, the phase shift between input and output volt-
age as well as the small signal amplification factor depend on the frequency of
the oscillations. Hence we are actually dealing with ϕ(ω) and a(ω). With ω
increasing, a(ω) will typically decrease while ϕ(ω) increases. In fact, ϕ(ω) will go
beyond 360◦ when the delay time between input and output exceeds one period
of the input signal. A necessary condition for the circuit to oscillate is obvi-
ously cosϕ(ω) > 0, i.e. oscillations can potentially occur at frequencies where
0◦ < ϕ(ω) < 90◦ or 270◦ < ϕ(ω) < 450◦ or 630◦ < ϕ(ω) < 810◦ and so on. How-
ever, for oscillations to actually occur, a(ω) must still be high enough to fulfill
the oscillation condition stated above.

The property that oscillations can occur at higher frequencies where ϕ(ω) is above
270◦ can e.g. be used in microwave oscillators using delay lines. However, in
oscillators using an LC tank this behavior is generally undesired since it may cause
oscillations near parasitic resonant frequencies of the circuit connected to the
feedback device.1 In this paper, we shall therefore regard oscillations beyond the
primary oscillation range (0◦ < ϕ(ω) < 90◦) as undesired parasitic oscillations.

General Non-Linear Treatment

While the linear approach has certainly given us a valuable qualitative insight
into the behavior of the oscillator, it’s quantitative applications are limited. This
is simply because oscillators are non-linear by nature and a time domain analysis
using differential equations is necessary. Since in the non-linear time domain
approach we cannot simply put a phase shift between the input and output
phasor of the feedback device as we did in the linear approach, we will need a
suitable non-linear circuit model of the feedback device to continue.

Let’s start by looking at the required properties of the feedback device model.
First of all, the output voltage Uf of the feedback device needs to be bounded.
Also, Uf should exhibit an approximately linear dependency on the input voltage
for sufficiently small input voltages at low input frequencies. Therefore, a good
starting point is the non-linear feedback device introduced in [2] with the current
output replaced by a voltage output. What we need to do now, is to augment
this feedback device model by a time delay mechanism (resulting in the desired
phase shift) and low-pass properties so that the small signal amplification factor
a(ω) decreases as the frequency rises. This can simply be achieved by preceding

1When taking parasitic inductances and capacitances on the circuit board and in the com-
ponents into account, the LC tank connected to the input becomes an intricate LC network
with several parasitic resonant frequencies above ω0 = 1/

√
LC.
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the non-linear feedback device with a cascade of n RC low-pass filters that are
mutually separated by ideal2 unity gain amplifiers as shown in figure 3.
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Figure 3: Non-linear feedback device with delay

As mentioned above, the last stage of this feedback device is an ideal controlled
voltage source similar to the ideal controlled current source used in [2] whose
output voltage Uf is given by

Uf = h(Un) = a1 arctan(a2Un)

and which therefore has a small signal gain of a0 = h′(0) = a1a2. The reader
is referred to [2] for a more detailed discussion of the properties of this feedback
function.

Phase Shift And Gain

Before we start deriving the differential equations governing the generic LC os-
cillator from figure 1 using the feedback device model from figure 3, let us do a
small signal linear analysis of this feedback device model. Using phasors, it is
easily shown that for a driving voltage of frequency ω, the phase shift of each

2Infinite input impedance, zero output impedance
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RC low-pass is given by arctan(ωτk) where τk = RkCk is the time constant of the
RC low-pass. Since the RC low-pass filters are mutually separated by unity gain
amplifiers, the overall phase shift is

ϕ(ω) =
n∑

k=1

arctan(ωτk)

Also the voltage attenuation factor of each RC low-pass filter is readily obtained to
be ((ωτk)2 +1)(1/2) resulting in a frequency dependent gain factor of the feedback
device of

a(ω) = a0 ·
n∏

k=1

1√
(ωτk)2 + 1

where a0 is the small signal gain factor of the last stage as introduced in the
previous section. The overall small signal phase shift and relative gain factor
a(ω)/a0 for τk = τ = 9ns and n = 20 for a frequency range between 100kHz and
10MHz have been plotted in figure 4.

Figure 4: Phase shift and relative gain

The frequency ranges where the feedback device, according to the phase shift ϕ in
the linear analysis, delivers positive resp. negative feedback into the LC tank have
been marked accordingly in the diagram. Let us at this point recall the linear
analysis of the oscillation condition: The circuit can oscillate in those frequency
ranges where positive feedback is delivered into the LC tank and the gain a(ω) of
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the feedback device is still sufficiently high to lead to a slight over-compensation
of the losses in the tank. Hence, for too high a small signal, low frequency gain
factor a(ω → 0) = a0, the circuit will not only be able to oscillate in the primary
(intended) frequency range from approximately 100kHz to 1200kHz, but will also
be prone to parasitic oscillations in the positive feedback frequency range around
6000kHz as can be seen from figure 4

Time Domain Analysis

Let’s take a closer look at the generic LC oscillator from figure 1 using the feed-
back device model given in figure 3. Using Kirchhoff’s laws [1], we obtain

If(t) = IL(t) + IC(t) + IRP
(t)

Uf(t) = h(Un(t)) = URf
(t) + URP

(t)

U(t) = UL(t) = UC(t) = URP
(t)

as well as

U(t) = UR1
(t) + U1(t)

U1(t) = UR2
(t) + U2(t)

...

Un−1(t) = URn(t) + Un(t)

Using IRk
(t) = CkU̇k(t) the second set of equations is readily rewritten as

U(t) = U1(t) + τ1U̇1(t)

U1(t) = U2(t) + τ2U̇2(t)

...

Un−1(t) = Un(t) + τnU̇n(t) (1)

with τk = RkCk. Also, differentiating the first equation in the first set with
respect to time yields İL(t) + İC(t) + İRP

(t)− İf(t) = 0 which immediately leads
to

1

L
U(t) + CÜ(t) +

1

RP

U̇(t)− d

dt

(
URf

(t)

Rf

)
= 0

Using URf
(t) = h(Un(t))−URP

(t) = h(Un(t))−U(t) from the first set and bearing
in mind that
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d

dt
h(Un(t)) = h′(Un(t)) · U̇n(t)

we finally arrive at

1

ω2
0

Ü(t) +
1

ω2
0C

(
1

RP

+
1

Rf

)
U̇(t) + U(t)− 1

ω2
0RfC

h′(Un(t)) · Un(t) = 0 (2)

with ω0 = 1/
√
LC. Equation (2) along with equation set (1) completely govern

the behavior of the circuit for all feedback functions h(Un) of the last stage of
the feedback device model and any number n of RC low-pass filters. However,
we shall continue to use h(Un) = a1 arctan(a2Un) along with n = 20 as we did
earlier in this paper.

Like with most non-linear differential equations we have to resort to a numerical
analysis at this point. Let us start by setting the parameters that will not change
during the remainder of this paper. These shall be a1 = 10, thereby limiting
the output voltage of the feedback device to approximately ±15V, Rf = 100kΩ
and τk = τ = 9ns 3 for all RC low-pass filters, equivalent to a cut-off frequency
of approximately 18MHz which is well above the frequency range of 100kHz to
10MHz that we are going to look at.

An obvious issue when covering a large frequency range is the L/C ratio of the
tank. In order to not end up with unreasonable L/C ratios, we shall use a constant
ratio of L/C = 630µH/nF over the entire frequency range 4. Furthermore,
the parallel loss resistance RP is a rather non-intuitive quantity and it may be
desirable to replace RP by the Q-factor of the LC tank by virtue of [3] RP =
Q
√
L/C.

Parasitic Oscillations

We shall now focus on the occurrence of parasitic oscillations above the primary
(intended) oscillation frequency range. The preceding linear analysis of the circuit
has already given us an idea of what to expect in terms of parasitic oscillations.
However any linear treatment of a highly non-linear system like an oscillator will
typically fail to make decent quantitative predictions and we need to resort to
numerically solving the non-linear differential equations governing the circuit in
order to obtain reasonable quantitative results. For this purpose, we have used
LSODE [4].

3The resulting phase shift behavior is roughly similar to the phase shift behavior of an
LM311 comparator at frequencies below 5MHz.

4This obviously implies that C = 1
ω0

√
C
L ≈

1
ω0
· 1.26 · 10−3 F

s in equation (2)
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From the linear analysis of the circuit, we know that the value of the small
signal, low frequency gain factor a0 of the feedback device is crucial for the
occurrence or absence of parasitic oscillations. We shall therefore investigate
the occurrence of oscillations and their amplitude for different values of a0 as the
natural frequency ω0 = 1/

√
LC of the tank moves over a wide range from 100kHz

to 10MHz 5. This has been done in figure 5 by numerically solving the differential
equations governing the circuit with parameters as specified so far in this paper
and assuming a moderately high Q-factor of the LC tank of Q = 80.

Figure 5: Occurrence of oscillations

Obviously, for a high gain of a0 = 200000 6 (red curve) the circuit will oscillate
not only when the natural frequency of the LC tank is below approximately
1.4MHz but also when the natural frequency is in a range around 6MHz7 In
practical oscillator circuits with the intended natural frequency of the LC tank
set below 1.4MHz this may cause undesired oscillations near parasitic resonant
frequencies of the circuit around 6MHz. This unfavorable behavior persists even

5The reader is reminded that a0 is related to the parameters a1 and a2 of the feedback model
by a0 = a1a2 and after setting a1 can be set by choosing a2.

6This is roughly the open-loop gain of an LM311 voltage comparator.
7The reader may have noticed that even in the frequency range around 3MHz where the

linear approach predicts no oscillations at all, the amplitude curve indicates some residual
oscillations. A deeper investigation reveals non-sinusoidal oscillations with frequencies jittering
between the primary and parasitic oscillation frequency range. This is clearly a non-linear
phenomenon of the circuit.

c© Dipl.-Phys. Jochen Bauer compiled for radiomuseum.org 9



down to a0 = 10 (green curve) although the amplitude of the oscillations around
6MHz now becomes somewhat smaller than the amplitude of the oscillations
below approximately 1100kHz. Finally, at a0 = 5 (blue curve) the oscillator is
left with only one oscillation frequency range ending at approximately 800kHz.
This rules out parasitic oscillations above the intended frequency range and can
be considered a stable oscillator design.

Frequency Deviation

We shall now turn our attention to the deviation of the oscillation frequency ωosc

from the natural frequency ω0 = 1/
√
LC of the LC tank. From the linear analysis

of the circuit we have learned that this is due to a virtual parallel reactance
appearing across the LC tank due to feedback. Here, we are interested in the
frequency deviation occurring in the primary oscillation range, where in the linear
approach, 0◦ < ϕ < 90◦ and hence ωosc < ω0 due to the appearance of a virtual
capacitance.

Again, the linear approach has given us a qualitative idea of what is going to
happen. However for reasonable quantitative results, we again need to resort
to numerically solving the non-linear differential equations (1),(2). Since the
linear approach predicts that the absolute value of the virtual parallel reactance
will increase with the gain factor of the feedback device necessary to sustain the
oscillations, we expect the frequency deviation ∆ω = ωosc − ω0 to depend on
the Q-factor of the LC tank and we shall therefore numerically investigate the
deviation of the oscillation frequency for different Q-factors of the LC tank over a
natural frequency range from 100kHz to 800kHz which is well inside the primary
oscillation range. The results of this analysis have been plotted in figure 6.

As expected, the oscillation frequency ωosc is below the natural frequency ω0 of
the LC tank and we see a pronounced dependency of the frequency deviation
∆ω = ωosc − ω0 on the Q-factor of the LC tank.

The plot in figure 6 has been created using a very high small signal, low frequency
gain factor of the feedback device of a0 = 200000. However, it turns out that the
frequency deviation curve actually depends very little on a0 and the curves for a0
down to a0 = 5 are practically identical to the curve shown. This behavior can
be attributed to the fact that for high gain factors, the feedback device will be in
saturation and hence inactive for most of the cycle, i.e. frequency skewing occurs
only for a short time within each cycle. As the small signal gain factor decreases,
the feedback device will have a smaller detuning effect but will be active (i.e. not
in saturation) for a longer time within each cycle.
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Figure 6: Frequency deviation
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