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Abstract

Almost all radio receivers make use of at least one tuned circuit that is driven by
a voltage source and feeds the voltage that develops across the tuned circuit into a
high input impedance gain stage. Typically, the voltage source will be an inductively
coupled antenna circuit and the input of the gain stage will be the grid of a vacuum
tube in vintage radios or the gate of a field effect transistor in modern day receivers.
An often neglected property of such a setup is that while the maximum current in the
tuned circuit always occurs at ω = 1/

√
LC the frequency where the voltage across the

tuned circuit reaches it’s maximum deviates from this frequency. As this deviation
turns out to be very small for tuned circuits having a reasonably high Q-factor and is
therefore neglectable for most receiver designs, it is still one of the keys to an in-depth
understanding of the behavior of tuned circuits.

The Driven Lossy Tuned Circuit

We’ll base our considerations on a tuned circuit where the losses occurring in
the capacitor C can be neglected against the losses occurring in the inductor L.
The losses in the inductor are modeled by a loss resistor Rs connected in series
with the inductor and the circuit shall be driven by a voltage source U0(t). This
equivalent circuit is depicted in figure 1

Since the series loss resistor Rs is intrinsic to the inductor, it always needs to be
connected directly to it and can not be moved to another place in the circuit.
In most cases, the voltage source will be a voltage coupled inductively into the
coil from a previous stage or the antenna circuit. If so, the voltage source U0(t)
is also intrinsic to the inductor and therefore also needs to be connected directly
to it in this equivalent circuit. Hence, the voltage developing across the tuned
circuit simply is the voltage UC(t) that can be measured at the capacitor.
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Figure 1: Driven lossy tuned circuit

The Current Response Function

Since we are only interested in the response of the system to a sinusoidal driving
voltage U0(t) we can waive solving the differential equations governing the lossy
tuned circuit and use Ohm’s law with complex impedances the engineer is most
familiar with. The complex driving voltage at frequency ω is assumed to be

U0(t) = Û0e
jωt

with it’s amplitude Û0 being real-valued. The complex current amplitude Î in
the circuit is then given by

Î =
Û0

Z

where

Z = Rs +
1

jωC
+ jωL

is the complex impedance of L, C and Rs connected in series. From these equa-
tions, one quickly calculates Î to be

Î = Û0

Rs − j
(
ωL− 1

ωC

)
R2

s +
(
ωL− 1

ωC

)2 (1)

From the above equation, the absolute value of the current amplitude in the
circuit turns out to be
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|Î| = Û0√
R2

s +
(
ωL− 1

ωC

)2 (2)

reaching it’s maximum at

ω0 =

√
1

LC

The Capacitor Voltage Response Function

Let us now turn to the voltage UC that develops across the tuned circuit and that
can be found at the capacitor. By virtue of Ohm’s law for complex impedances,
it’s complex amplitude is given by

ÛC = ZC Î

where

ZC =
1

jωC

is the complex impedance of the capacitor. Using Î from equation (1) it follows
that

ÛC = Û0
1− ω2LC − jωRsC

(1− ω2LC)2 + (ωRsC)2

and from this expression, the absolute value of the voltage amplitude at the
capacitor is easily determined to be

|ÛC | =
Û0√

(1− ω2LC)2 + (ωRsC)2

completing the square in the argument of the square root function then finally
yields:

|ÛC | =
Û0√(

LCω2 + R2
sC
2L

− 1
)2

−
(

R2
sC
2L

− 1
)2

+ 1

(3)

From this equation it can be seen that the voltage amplitude at the capacitor
reaches it’s maximum for a driving frequency of
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ωC =

√
1

LC
− R2

s

2L2
(4)

that deviates from the frequency ω0 =
√

1/LC where the current amplitude Î in
the circuit reaches it’s maximum.

Analysis of the Results

For a detailed discussion of the implications of the formulas obtained in the
previous sections, it is convenient to replace the series loss resistance Rs by the
Q-factor of the tuned circuit. Series loss resistance and Q-factor of a tuned circuit
are related by [2]

Q =
1

Rs

√
L

C

using the above expression along with ω0 =
√
1/LC in equation (4) the driving

frequency where the voltage at the capacitor reaches it’s maximum can be written
as

ωC = ω0

√
1− 1

2Q2

From the above equation, the relative frequency deviation is given as

∆ω

ω0

=
ω0 − ωC

ω0

= 1−
√

1− 1

2Q2

For reasonably high Q-factors, the frequency deviation is very small. Figure 2
shows the relative frequency deviation for Q-factors ranging from 20 to 80.

It becomes obvious that in most practical applications such small deviations are
neglectable, explaining why an analysis of this frequency shift due to losses in
the tuned circuit is mostly absent in practically oriented textbooks. It is still
worth noting that this frequency shift is a general phenomenon in all harmonic
oscillators provided that the damping force (friction) is “ohmic”. See [3] for a
general introduction.

Let us now turn to the frequency response curves of the tuned circuit. Using the
Q-factor instead of the series loss resistance, the absolute value of the current
amplitude |Î| in the tuned circuit given in equation (2) can be written as
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Figure 2: Relative frequency deviation as a function of the Q-factor

|Î| =
Û0

√
C
L√

1
Q2 +

(
ω
ω0

− 1
ω
ω0

)2

We can now use the maximum current amplitude

|Î|M =
Û0

√
C
L

1
Q

occurring at ω0 =
√
1/LC to obtain the normalized current amplitude response

function of the tuned circuit:

|Î|
|Î|M

=
1√

1 +Q2

(
ω
ω0

− 1
ω
ω0

)2

Let us now again turn to the capacitor voltage response function. Replacing the
series loss resistance by the Q-factor, we can write equation (3) as:
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|ÛC | =
Û0√((

ω
ω0

)2

+ 1
2Q2 − 1

)2

−
(

1
2Q2 − 1

)2

+ 1

(5)

From which the maximum capacitor voltage amplitude follows to be

|ÛC |M =
Û0√

1−
(
1− 1

2Q2

)2

allowing us to state the normalized capacitor voltage response function:

|ÛC |
|ÛC |M

=
1√

1

1−
(
1− 1

2Q2

)2

((
ω
ω0

)2

−
(
1− 1

2Q2

))2

+ 1

Note that we have used ω/ω0 as the normalized frequency in both functions,
allowing us to easily create comparison plots of the current and capacitor voltage
response function. We’ll start with a very low Q-factor of Q = 2 producing two
quite distinct response curves as shown in figure 3.
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Figure 3: Current and voltage response for Q=2

In most practical circuits, the Q-factor will however be a lot higher then Q =
2. As the the Q-factor increases, the normalized current and voltage response
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functions become a lot more similar to each other. This can for example be seen
from the the response functions for Q = 10 shown in figure 4.
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Figure 4: Current and voltage response for Q=10
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