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Abstract

This article takes a closer look at the superregenerative receiver invented by Armstrong
[3] using an analytic, non-numeric approach. By treating the superregenerative circuit
employing a separate quench function generator as a parametric oscillator, well known
methods for solving the resulting differential equations can be applied. An approximate
solution for the development of oscillation bursts in the circuit for a typical time-
dependent feedback is given and analyzed in detail. In particular, expressions for the
frequency response curve and bandwidth as well as the amplification factor are given.

Note: The reader should already have read the predecessor of this paper [1] or
should be otherwise familiar with the basic principles of superregeneration.

The Superregenerative Circuit As A Parametric Oscillator

In the predecessor of this paper [1] the differential equation for the charge Q of
the capacitor C of the tuned circuit in a superregenerative receiver based on a
linear feedback model has been shown to be

LQ̈(t) + R̃(t)Q̇(t) +
1

C
Q(t) = UA(t) (1)

provided that the quench cycle frequency is considerably lower than the resonant
frequency of the tuned circuit. In the above expression, L is the inductance
of the tuned circuit, UA(t) is the driving voltage (antenna input) and R̃(t) is
the time-dependent virtual (series) loss resistance depending on the physical loss
resistance of the tuned circuit and the amount of positive feedback applied 1. In a
superregenerative receiver relying on external quenching, the amount of positive
feedback and therefore the virtual loss resistance R̃(t) governing the quench cycle
of the superregenerative circuit is controlled by a separate function generator
module in the circuit.

1For a detailed explanation, the reader is referred to [1] and the references given therein.
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Using Q(t) = CU(t) where U(t) is the voltage across the capacitor and ω2
0 =

1/LC, this differential equation can be brought into the more convenient form

Ü(t) +
1

L
R̃(t)U̇(t) + ω2

0U(t) = ω2
0UA(t) (2)

The above differential equation describes a parametric oscillator [2] with a con-
stant resonant frequency ω0. For any reasonable Q-factor of the tuned circuit
(Q� 2) and provided that

d

dt
R̃(t)� 2Lω2

0 (3)

i.e. R̃(t) is only changing slowly with respect to the resonant frequency of the
tuned circuit 2, we can apply well known mathematical procedures (see appendix
A) for differential equations of this type. The solution of (2) can then be written
as

U(t) = Uh(t) + Up(t)

Uh(t) = (c1 sin (ω0t) + c2 cos (ω0t)) · e−
1
2L

∫ t
a R̃(τ)dτ

Up(t) = ω0

(∫ t

b

UA(τ)e
1
2L

∫ τ
a R̃(τ ′)dτ ′ · sin (ω0(t− τ)) dτ

)
· e−

1
2L

∫ t
a R̃(τ)dτ

(4)

(5)

(6)

In the above equations, Uh(t) is the complete solution of the homogeneous dif-
ferential equation (UA(t) ≡ 0) while Up(t) is a particular solution, also called a
particular integral, of the inhomogeneous differential equation (UA(t) non-zero
for at least one t). Let us now look at the two parts of the general solution
individually.

Obviously, Uh(t) describes the free oscillations of the system with initial condi-
tions given by c1 and c2. These free oscillations are responsible for a “memory
effect” in the circuit that was demonstrated numerically in [1] were free oscilla-
tion bursts (UA(t) ≡ 0) created by non-zero initial conditions in the tuned circuit
at t = a when the system is switched on keep coming back each quench cycle
provided that the average virtual loss resistance

¯̃R =
1

Tq

∫ Tq

0

R̃(τ)dτ

over one quench period Tq is zero or negative. In fact, if the average virtual
loss resistance is equal to zero, the free oscillation burst will be coming back at

2These conditions also need to be fulfilled to arrive at equation (1) in the first place, see [1]
for details.
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an unchanged maximum amplitude, while for an average virtual loss resistance
below zero, the maximum amplitude will even increase exponentially over time.
Obviously, for the regenerative receiver to function properly, R̃(t) needs to be
chosen so that it’s average is sufficiently above zero, resulting in an exponential
decay of the free oscillations given by Uh(t). The reader is again referred to
appendix A for a detailed proof.

At this point, some clarification on superregeneration and “free oscillations”
seems appropriate. In our approach here, the “free oscillations” responsible for
an undesired memory effect in the circuit are the non-driven oscillatory solutions
of the differential equations governing the parametric oscillator with a continu-
ously variable virtual loss resistance and are not to be confused with the “free
oscillations” invoked in simplified explanations of superregeneration relying on a
simple non-parametric tuned circuit respectively oscillator as given by Armstrong
[3] and repeated in the predecessor of this paper [1].

Let us now turn to the solutions Up(t), of the driven system. Since, as we have
seen above, Uh(t) needs to decay exponentially, the only remaining part of the
solution is the particular integral Up(t). First, note that Up(t) is independent of
the parameter a as shown in appendix A. However, strictly speaking, there is an
infinite number of particular integrals Up(b, t), each of them given by a specific
value of b and the reader might wonder which one to pick. Fortunately, for any
reasonable function R̃(t) that has a linear approximation around R̃ = 0 when
crossing into the negative region, it turns out that all particular integrals Up(b, t)
are approximately equal and independent of b. The reader is once again referred
to appendix A for details.

A Simple Time-Dependent Virtual Loss Resistance

In order to evaluate U(t) ≈ Up(t) from equation (6) we need to specify the virtual
loss resistance R̃(t) as a function of time. Since we are mostly interested in the
build-up of the oscillations in the tuned circuit and not so much in their successive
quenching, we only need an expression for R̃(t) for the first part of the quenching
cycle. Hence, let us assume that R̃(t) descends linearly around t = 0 from the
positive region into the negative region. More precisely, it should start the linear
phase of it’s descent at t = −t1, cross R̃ = 0 at t = 0 and end it’s linear descent
at t = t1, now taking a constant value of R̃(t) = −R1 for t1 ≤ t ≤ t2. For t > t2,
we require R̃(t) to quickly move up well into the positive region and to stay
there to quench the oscillations before the next cycle begins. If the oscillations
from the previous quench cycle die down to a neglectable amplitude before the
beginning of the next quench cycle, each cycle may be treated independently from
it’s predecessor and the following results are applicable to all quench cycles. Let
us now look at a sketch of R̃(t) as described above (figure 1).
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Figure 1: Virtual loss resistance R̃ as a function of time

In the range of −t1 ≤ t ≤ t2, this virtual loss resistance function R̃(t) can be
written as

R̃(t) =

{
−mt ;−t1 ≤ t ≤ t1

−R1 ; t1 < t ≤ t2
(7)

It immediately becomes clear that the negative slope m of R̃(t) around R̃ = 0 is
given by m = R1/t1.

The Closed-Form Solution

Using R̃(t) as defined in equation (7) in equation (6) and setting a = b = −t1 as
well as assuming the driving voltage UA(t) to be a sinusoid with amplitude ÛA,
angular frequency ω and arbitrary phase angle ϕ, i.e.

UA(t) = ÛA sin(ωt+ ϕ) (8)

the following approximation of U(t) valid for t1+8L/R1 ≤ t ≤ t2 and m ≥ 16L/t21
can be obtained:

U(t) ≈ −ÛAe
R1
2L

(t−t1)e
m
4L
t21ω0

√
πL

m
e−

L
m

(ω−ω0)2 cos(ω0t+ ϕ) (9)

It should be noted that the above formula works very well for times t where
|U(t)| is relatively large but is less accurate for times t where |U(t) ≈ 0|. This
is however of no concern to us since we are interested in the amplitude of the
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oscillations of U(t) and not how it behaves around U ≈ 0. As usual, a detailed
derivation of the above results can be found in appendix A.

At this point, let us consider the following example to get an idea of the mag-
nitude of all the quantities involved in the equations so far. We shall consider a
superregenerative receiver designed for a frequency of around 30MHz and there-
fore employing a coil of L = 3µH. First, we can use equation (3) to obtain the
maximum negative slope mmax that our solution is valid for. We immediately
obtain

d

dt
R̃(t) = m� 213

GΩ

s

Hence, we can set mmax = 20GΩ/s. Next, we need to get an idea of the magnitude
of t1. Suppose that the receiver is designed for VHF-AM reception. The minimum
quench cycle frequency then needs to be twice the desired audio signal bandwidth
of the receiver [11]. If we settle for an audio bandwidth of 4kHz, the maximum
quench cycle period is obviously Tq = 125µs. Of this quench cycle time, we need
to save a considerable portion for the part of the cycle where R̃ = −R1 and, of
course, the part of the cycle where the oscillations are quenched. A conservative
setting for t1 is therefore t1 = 20µs.

We can now, by virtue of m ≥ 16L/t21 obtain the minimum negative slope mmin

for which our solution is valid. The result is mmin = 120kΩ/s. With these results,
we can then calculate R1 = m · t1 = 2.4Ω and the minimum time t for equation
(9) to be applicable is then t ≥ t1 + 8L/R1 = 30µs.

Bandwidth, Gain And Linearity

Let us move from right to left in interpreting U(t) as given by equation (9).
Obviously, the factor cos(ω0t + ϕ) is the oscillatory part while the other factors
give the envelope of the oscillations. As far as the oscillatory part goes, it is
interesting to note that the arbitrary phase angle ϕ of the input signal also
appears in the oscillation bursts of the superregenerative circuit. Next comes the
frequency response function

g(ω) = e−
L
m

(ω−ω0)2 (10)

which, unlike the frequency response curve of a non-superregenerative single tank
receiver 3 has the shape of a Gaussian Function [5]. From the above expression,
the -3dB Bandwidth of the superregenerative receiver is readily obtained by solv-
ing 4

3See [4] for generalized frequency response curves of single tank circuits.
4Note that g(ω) is already conveniently normalized on the vertical axis.
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g(ω) =
1√
2

for ω, yielding the solutions

ω1/2 = ω0 ∓
√
m

L

1

2
ln 2

From which the absolute bandwidth ∆ω follows to be

∆ω = ω2 − ω1 =
√

2 ln 2 ·
√
m

L
≈ 1.18 ·

√
m

L
(11)

Obviously, neither frequency response nor bandwidth of the superregenerative
receiver depend on the Q-factor of the tuned circuit any more 5. This is in stark
contrast to the behavior of non-superregenerative single tank receivers.

It quickly becomes clear that the bandwidth of the superregenerative receiver is
relatively large. Even when setting m = mmin = 120kΩ/s and L = 3µH from the
previous section, we obtain a bandwidth of ∆ω = 236kHz.

Let us now turn to the amplification factors in equation (9). We notice that there
is one non-exponential amplification factor

µr = ω0

√
πL

m

that we might call the regular or non-superregenerative gain factor. It increases
as the negative slope of the descent of the virtual loss resistance R̃(t) into the
negative region decreases and the tuned circuit therefore spends more time in
the R̃ ≈ 0 region. Also, by looking at equation (11), we see that it exhibits a
reciprocal relation with the bandwidth of the superregenerative receiver, i.e. a
higher regular gain factor will entail a smaller bandwidth which is a well known
behavior of (regular) regenerative circuits.

Using m = 120kΩ/s and L = 3µH along with ω0 = 2π ·30MHz as in the examples
before, we obtain µr ≈ 1670.

Moving further left in equation (9) we now arrive at the exponential gain factor

µs = e
R1
2L

(t−t1)e
m
4L
t21

Obviously, this gain factor is due to the exponential build-up of oscillations in
the tuned circuit and can therefore be dubbed the superregenerative gain factor.
The right exponential function in the above expression can be attributed to the

5This has also been demonstrated numerically in the predecessor of this paper [1].
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superregenerative gain during the descent of the virtual loss resistance R̃(t) into
the negative region, while the left exponential function accounts for the gain while
R̃(t) = −R1.

We can continue our numeric example used so far and set m = 120kΩ/s, L = 3µH,
t1 = 20µs and R1 = 2.4Ω. However, we’ll also need a time t at which we look at
the amplitude of the oscillations. Setting t = 60µs, which is a little before the
middle of the quench cycle, just before the oscillation quenching sets in, we obtain
µs ≈ 485 · 106. This is clearly an amplification factor that would be impossible
to reach by a non-superregenerative single tank circuit.

Finally, as going from right to left in equation (9), we come to the amplitude ÛA of
the driving voltage UA(t) that is the input signal of the superregenerative circuit.
It is obvious that the amplitude of the oscillation bursts is proportional to the
amplitude of the input signal. Also, by substituting UA(t) = ÛA sin(ωt+ ϕ) into
equation (6) it becomes clear that this holds true for any virtual loss resistance
function R̃(t) that satisfies the necessary prerequisites for the approximations
made in this article. However, it needs to be pointed out that in practical circuits
that employ non-ideal feedback devices this result only holds true if the amplitude
of the oscillations is at all times small enough for the non-ideal feedback device
to stay in it’s linear region 6.

Appendix A: Deriving The Equations

We start with equation (2). Using the substitution [2]

U(t) = y(t) · e−
1
2L

∫ t
a R̃(τ)dτ (12)

yields the following differential equation for y(t)

ÿ(t) +

(
ω2

0 −
1

2L
˙̃R(t)− 1

4L2
R̃2(t)

)
y(t) = ω2

0UA(t) · e
1
2L

∫ t
a R̃(τ)dτ (13)

Let us first look at the expression R̃2/4L2. Making the reasonable assumption
that the absolute value |R̃| of any occurring negative virtual loss resistance does
not exceed 4 times the (positive) physical loss resistance R of the tuned circuit
and using ω2

0 = 1/LC as well as [6]

Q =
1

R

√
L

C

were Q is the Q-factor of the tuned circuit, we have

6Typically, some form of automatic gain control will have to be used to limit the amplitude
of the oscillation bursts thereby making the feedback device non-linear for larger amplitudes.
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1

4L2
R̃2 ≤ 4

Q2
ω2

0

Therefore, for any reasonable Q-factor of Q � 2, the expression R̃2/4L2 can be
neglected against ω2

0 in equation (13).

Let us now look at 1
2L

˙̃R from equation (13). We can neglect this expression
against ω2

0 if

˙̃R� 2Lω2
0

thus arriving at

ÿ(t) + ω2
0y(t) = f(t) (14)

with

f(t) = ω2
0UA(t) · e

1
2L

∫ t
a R̃(τ)dτ

The general solution of the homogeneous version of differential equation (14)
(f(t) ≡ 0) is then given by

yh(t) = c1 sin(ω0t) + c2 cos(ω0t)

while by virtue of Leibniz’ Integral Rule [7]

yp(t) =
1

ω0

∫ t

b

f(τ) sin (ω0(t− τ)) dτ

can be shown to be a particular integral of differential equation (14). Substituting
the results obtained so far into equation (12) then yields the results given in the
main section of this paper.

Let’s now take a closer look at the behavior of Uh(t) from equation (5). Since
R̃(t) is Tq-periodic, where Tq is the duration of one quench cycle, it’s average over
one period is

¯̃R =
1

Tq

∫ Tq

0

R̃(τ)dτ

We can then write R̃(t) as

R̃(t) = R̃0(t) + ¯̃R (15)

Obviously, R̃0(t) is also Tq-periodic with it’s integral over one period being zero.
Let us define the integral function h(t) to be
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h(t) =

∫ t

a

R̃0(τ)dτ

for t ≥ a. Since

h(t+ Tq) =

∫ t+Tq

a

R̃0(τ)dτ =

∫ t

a

R̃0(τ)dτ +

∫ t+Tq

t

R̃0(τ)dτ

=

∫ t

a

R̃0(τ)dτ +

∫ Tq

0

R̃0(τ)dτ =

∫ t

a

R̃0(τ)dτ + 0 = h(t)

the integral function h(t) is obviously also Tq-periodic. Substituting equation
(15) into equation (5) gives

Uh(t) = (c1 sin (ω0t) + c2 cos (ω0t)) · e−
1
2L
h(t) · e−

1
2L

¯̃R(t−a)

from which the claims about the memory effect in the circuit due to Uh(t) made
in the main section of this paper follow immediately.

Let us now turn to Up(t) as given by equation (6). Let S(t) be an anti-derivative
of R̃(t), equation (6) can then be written as

Up(t) = ω0

(∫ t

b

UA(τ)e
1
2L

∫ τ
a R̃(τ ′)dτ ′ · sin (ω0(t− τ)) dτ

)
· e−

1
2L

∫ t
a R̃(τ)dτ

= ω0

(∫ t

b

UA(τ)e
1
2L

(S(τ)−S(a)) · sin (ω0(t− τ)) dτ

)
· e−

1
2L

(S(t)−S(a))

= ω0e
− 1

2L
S(a)e

1
2L
S(a)

(∫ t

b

UA(τ)e
1
2L
S(τ) · sin (ω0(t− τ)) dτ

)
· e−

1
2L
S(t)

= ω0

(∫ t

b

UA(τ)e
1
2L
S(τ) · sin (ω0(t− τ)) dτ

)
· e−

1
2L
S(t)

Obviously, Up(t) is independent of a.

We shall now evaluate Up(t) as given in equation (6) with R̃(t) specified by
equation (7) and UA(t) given by equation (8). Setting a = b = −t1, equation (6)
yields

Up(t) = ω0

(∫ t

−t1
ÛA sin(ωτ + ϕ)e

1
2L

∫ τ
−t1

R̃(τ ′)dτ ′ · sin (ω0(t− τ)) dτ

)
·e−

1
2L

∫ t
−t1

R̃(τ)dτ

Let us define

I3(t) = e
− 1

2L

∫ t
−t1

R̃(τ)dτ
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and postpone it’s evaluation until later. Splitting the remaining integrals into
ranges suiting the definition of R̃(t) from equation (7) and inserting the appro-
priate expression for R̃(t) into each integral, we arrive at

Up(t) =ω0ÛAI3(t)

∫ t1

−t1
e

1
2L

(∫ t1
−t1

(−mτ ′)dτ ′+
∫ τ
t1

(−mτ ′)dτ ′
)
· sin(ωτ + ϕ) sin (ω0(t− τ)) dτ

+ω0ÛAI3(t)

∫ t

t1

e
1
2L

(∫ t1
−t1

(−mτ ′)dτ ′+
∫ τ
t1

(−R1)dτ ′
)
· sin(ωτ + ϕ) sin (ω0(t− τ)) dτ

Performing the inner integrations, we get

Up(t) = ω0ÛAI3(t)e
m
4L
t21 · I1(t) + ω0ÛAI3(t)e

R1
2L
t1 · I2(t)

with

I1(t) =

∫ t1

−t1
e−

m
4L
τ2 ·W (t, τ)dτ

and

I2(t) =

∫ t

t1

e−
R1
2L
τ ·W (t, τ)dτ

where W (t, τ) is defined as

W (t, τ) = sin(ωτ + ϕ) sin (ω0(t− τ))

Let’s now take a closer look at I1(t). There is no closed-form anti-derivative of
the integrand and we’ll therefore try to find a closed form approximation of this
integral. Since |W (t, τ)| ≤ 1 and the exponential function

e−
m
4L
τ2

causes a sharp cut-off of the integrand that is well within the integration bound-
aries [−t1, t1] if

m

4L
t21 ≥ 4 (16)

we may, under the above prerequisite, extend the boundaries of integration to
[−∞,∞] ending up with

I1(t) ≈
∫ ∞
−∞

e−
m
4L
τ2W (t, τ)dτ (17)

This approximation works very well unless |W (t, τ)| is almost zero within [−t1, t1]
and grows significantly outside this range, in which case the absolute value of the
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integral will however be quite small. We therefore note that the above approx-
imation works very well for large values of |I1(t)| and is less accurate for small
values of |I1(t)|. Obviously, in this approximation, Up(t) is independent of the
integral boundaries given in equation (6). It should be noted that this approx-
imation can be applied to all virtual loss resistance functions R̃(t) that have a
linear approximation around R̃ = 0.

The validity of extending the integration boundaries may more rigorously be
shown by looking at the integral

I ′1 =

∫ t1

−t1
e−

m
4L
τ2 · 1 dτ

Substituting

x =

√
m

4L
τ

yields

I ′1 =

√
4L

m

∫ x1

−x1
e−x

2

dx = 2

√
4L

m

∫ x1

0

e−x
2

dx

with

x1 =

√
m

4L
t1

Since the prerequisite made in equation (16) now translates into x1 ≥ 2 we can
evaluate I ′1 with x1 = 2 and compare the result to I ′1 with x1 =∞. Using numeric
tables of Gaussian Integrals we find that

I ′1,x1=2 = 2

√
4L

m
·
√
π

2
· 0.995322265

and, of course

I ′1,x1=∞ = 2

√
4L

m
·
√
π

2
· 1

Let us now evaluate I1(t) as given by equation (17). The function W (t, τ) can
be split into [8]

W (t, τ) = W1(t, τ) +W2(t, τ) +W3(t, τ) +W4(t, τ) (18)

with
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W1(t, τ) =
1

2
cos ((ω + ω0)τ) cos(ϕ− ω0t)

W2(t, τ) = −1

2
sin ((ω + ω0)τ) sin(ϕ− ω0t)

W3(t, τ) = −1

2
cos ((ω − ω0)τ) cos(ϕ+ ω0t)

W4(t, τ) =
1

2
sin ((ω − ω0)τ) sin(ϕ+ ω0t)

Because of the symmetry of W2(t, τ) and W4(t, τ) with respect to τ = 0 we have∫ ∞
−∞

e−
m
4L
τ2W2(t, τ)dτ =

∫ ∞
−∞

e−
m
4L
τ2W4(t, τ)dτ = 0

On the other hand, the integrals involving W1(t, τ) and W3(t, τ) are evaluated to
be [9] ∫ ∞

−∞
e−

m
4L
τ2W1(t, τ)dτ = cos(ω0t− ϕ) ·

√
πL

m
· e−

L
m

(ω+ω0)2

and ∫ ∞
−∞

e−
m
4L
τ2W3(t, τ)dτ = − cos(ω0t+ ϕ) ·

√
πL

m
· e−

L
m

(ω−ω0)2

Since ω and ω0 have the same magnitude, the integral involving W1(t, τ) can
obviously be neglected against the integral involving W3(t, τ), leaving us with

I1(t) ≈ − cos(ω0t+ ϕ) ·
√
πL

m
· e−

L
m

(ω−ω0)2

The evaluation of I2(t) is somewhat easier since there is a closed-form anti-
derivative of the integrand [10]. Splitting W (t, τ) again according to equation
(18) and performing the integration yields

I2(t) = J(t)− J(t1)

with
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J(τ) =
1

2
cos(ϕ− ω0t)

e−
R1
2L
τ√(

R1

2L

)2
+ (ω + ω0)2

cos ((ω + ω0)τ − ϑ1)

−1

2
sin(ϕ− ω0t)

e−
R1
2L
τ√(

R1

2L

)2
+ (ω + ω0)2

sin ((ω + ω0)τ − ϑ1)

−1

2
cos(ϕ+ ω0t)

e−
R1
2L
τ√(

R1

2L

)2
+ (ω − ω0)2

cos ((ω − ω0)τ − ϑ2)

+
1

2
sin(ϕ+ ω0t)

e−
R1
2L
τ√(

R1

2L

)2
+ (ω − ω0)2

sin ((ω − ω0)τ − ϑ2)

where

ϑ1/2 = arccos

 −R1

2L√(
R1

2L

)2
+ (ω ± ω0)2


If we are only interested in the behavior of the superregenerative circuit at times
t ≥ t1 + 8L/R1, we have J(t)� J(t1) and hence I2 ≈ −J(t1) no longer depends
on t. Also, since ω and ω0 have the same magnitude, all summands in J(t1)
containing ω+ω0 can be neglected against their counterparts containing ω−ω0 for
all reasonable values of R1 and L. The resulting expression for I2 then simplifies
to

I2 ≈
1

2

e−
R1
2L
t1√(

R1

2L

)2
+ (ω − ω0)2

cos(ϕ− ϑ2 + ωt1)

and we arrive at

Up(t) ≈− ω0ÛAI3(t)e
m
4L
t21

√
πL

m
e−

L
m

(ω−ω0)2 cos(ω0t+ ϕ)

+ω0ÛAI3(t)
1

2

1√(
R1

2L

)2
+ (ω − ω0)2

cos(ϕ− ϑ2 + ωt1)

For all reasonable parameters and t21 ≥ 16L/m as required earlier, the second
summand of the above expression can safely be neglected against the first sum-
mand and we obtain

Up(t) ≈ −ω0ÛAI3(t)e
m
4L
t21

√
πL

m
e−

L
m

(ω−ω0)2 cos(ω0t+ ϕ)
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Evaluating I3(t) is easily performed by again splitting the integral into ranges
suiting the definition of R̃(t) from equation (7) and inserting the appropriate
expression for R̃(t) into each integral. The result is

I3(t) = e
R1
2L

(t−t1)

and hence, we finally arrive at equation (9).
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