Die Bestimmung einfacher Antennendiagramme

Teil I: Dipolgruppen

Einleitung

In der Praxis der Sender- und Empfängertechnik werden meist Antennen mit Richtwirkung verwendet. Das hat z. B. bei Sendeantennen den Vorteil, daB die abgestrahlte Leistung sich nicht über den ganzen Raum verteilt, sondern nur einen bestimmten, gewünschten Raum erfüllt. Innerhalb dieses Raumes ergeben sich bei konstanter Sendeleistung höhere Feldstärken und damit bessere Empfangsbedingungen.
Auf der Empfängerseite haben Antennen mit Richtwirkung die Aufgabe, Störungen durch reflektierte Wellen, durch andere Sender oder sonstige Störer auszublenden.
Antennen mit Richtwirkung werden als Richtstrahler bezeichnet. Der einfachste Richtstrahler, von dem wir ausgehen, ist der $/ / 2$-Dipol. Seine Richtcharakteristik ist in Bild 1 dargestellt. Man sieht, daß ein Dipol nur in Ebenen, die die Dipolachse enthalten, eine Richtwirkung hat, während in den Ebenen, die senkrecht auf der Dipolachse stehen, keine Richtwirkung auftritt. In diesen Ebenen ist der Dipol ein Rundstrahler. Antennen mit einer besseren Richtwirkung erhält man durch Kombination von Dipolen in sogenannten Dipolgruppen. Diese können ein-, zwei- oder dreidimensional sein,

a

b
 legten Ebene: $\mathbf{b}=$ in der senkrecht auf dem Dipol stehenden Ebene. Die Eintragung,$\Varangle \psi^{\prime \prime}$ gilt für den Fall, dab der Dipol in der x-Achse liegt

4 Bild 2.
Anordnung von Dipolen. a - eine Reihe in einer Ebene, eindimensionale Anordnung; $\mathrm{b}=\mathrm{zwei}$ Reihen in einer Ebene, zweidimensionale Anordhung; $\mathrm{c}=$ zwei Reihen in zwei Ebenen übereinander, dreidimensionale Anordnung; $\mathbf{d}=$ zwei Dipole, in einer Linie liegend: Dipollinie: e und $f=$ zwei Dipole, deren Achsen einander parallel sind: Dipol zeile. In a, b, c ist die Angabe "xy-Ebene" nur als Beispiel aufzufassen
wie in Bild 2a, b, c angedeutet. Dabei kann jeder Einzeldipol mit einem Strom beliebiger Amplitude und Phase erregt werden. Die Richtwirkung solcher Dipolgruppen entsteht durch Interferenz der Dipolfelder. Bei sehr hohen Frequenzen (GHz -Bereich) werden anstelle von Dipolgruppen sogenannte Flächenstrahler verwendet, die mit stetig verteilten Strömen gespeist werden. Sie ergeben sich theoretisch aus Dipolgruppen mit unendlich vielen, unendlich dicht benachbarten Dipolen. Auch bei Flächenstrahlern ist also die Interferenz der Grund für die Richtwirkung des Strahlers.

Anhand von Beispielen soll nun gezeigt werden, wie die Richtcharakteristiken verschiedener Antennen bestimmt werden können.

1 Gleichphasige Erregung der Einzeldipole einer Dipolgruppe

Zunächst wird die einfachste Dipolgruppe, die also lediglich aus zwei Einzeldipolen besteht, betrachtet. Die Ströme in diesen Dipolen werden als gleich vorausgesetzt (gleidhphasige Erregung). Für die räumliche Anordnung der beiden Dipole zueinander gibt es verschiedene Möglichkeiten.

1.1 Die horizontale Dipolzeile (Horizontalcharakteristik)

Bild $3 a$ zeigt, was unter einer horizontalen Dipolzeile zu verstehen ist. Wir haben zwei Dipole, die in einer horizontalen Ebene (xy-Ebene) senkrecht stehen, deren Achsen parallel zueinander sind und die den Abstand d voneinander haben. Von dieser Anordung soll die Horizontalcharakteristik gefunden werden, d. h. das Richtdiagramm in der xy-Ebene ($\varphi=0$).

Zu diesem Zweck betrachten wir die $x y$-Ebene von oben (Bild $3 b$). In einem beliebigen Aufpunkt P, dessen Abstand r vom Koordinatenursprung groB ist gegen den Dipolabstand d, wollen wir nun die Feldverhältnisse untersuchen. Man erkennt aus Bild 3b sofort, daB die Wellenzüge, die von den Dipolen 1 und 2 ausgehen, unterschiedliche Weglängen bis zum Aufpunkt P zurückzulegen haben. Mit der gemachten Voraussetzung $r \geqslant d$ verlaufen die Wellenzüge von Dipol 1 und 2 zum Punkt P näherungsweise parallel und der Wegunterschied Δs läßt sich einfach berechnen. Es gilt:

$$
\begin{equation*}
\Delta s=d \cdot \cos \psi \tag{1}
\end{equation*}
$$

Nimmt man die Wellenlänge der von den Dipolen abgestrahlten Felder mit λ an, so beträgt der Phasenunterschied der beiden Wellenzüge im Punkt P offensichtlich:

$$
\begin{equation*}
\delta=\frac{2 \pi}{\lambda} \cdot \Delta s=\frac{2 \pi}{\lambda} \cdot \mathrm{~d} \cdot \cos \psi \tag{2}
\end{equation*}
$$

Erzeugt der Dipol 1 in P ein Feld mit der Amplitude A, so hat das Feld des Dipols 2 in P zwar die gleiche Amplitude,

Bild 4
Vektorielle Addition der beiden Wellenzüge
aber einen zusätzlichen Phasenwinkel δ. Beide Felder addieren sich in P (Bild 4). Als Summenamplitude A_{8} ergibt sich:

$$
\begin{equation*}
\left|A_{\mathrm{s}}\right|=2 A \cdot \cos \frac{\delta}{2} \tag{3}
\end{equation*}
$$

Setzt man Gl. (2) in Gl. (3) ein, so wird:

$$
\begin{equation*}
\left|A_{*}\right|=2 A \cdot \cos \left(\pi \cdot \frac{d}{\lambda} \cdot \cos \psi\right) \tag{4}
\end{equation*}
$$

Man sieht, daß die Summenamplitude A_{s} vom Azimutwinkel ψ abhängt; es tritt also tatsächlich eine Richtwirkung auf. MaBgebend für die Wirkung von ψ ist der Faktor $\frac{d}{\lambda}$.

Die Auswertung der Gl. (4) kann entweder rein rechnerisch oder auch graphisch erfolgen. Auf die letztgenannte Methode soll etwas näher eingegangen werden, weil sie es gestattet, relativ schnell Gleichungen von der Art der Gl. (4) auszuwerten.
$\cos \psi$ kann sich nur von -1 bis +1 verändern, so da B das Argument $\pi \cdot \frac{d}{\lambda} \cdot \cos \psi$ sich lediglich zwischen $-\pi \cdot \frac{d}{\lambda}$ und

Bild 5. Grafische Konstruktion von cos $\left(\frac{\pi}{2} \cdot \cos x\right)$

Bild 6. Konstruktion des Polardiagramms nach Bild 5
$+\pi \frac{d}{\lambda}$ bewegen kann. Bild 5 zeigt, wie der Wert des Argumentes in Abhängigkeit von ψ bestimmt wird. Der Einfachheit wegen soll $\frac{d}{2}=\frac{1}{2}$ gesetzt werden, so daß sich das Argument jetzt zwischen $-\frac{\pi}{2}$ und $+\frac{\pi}{2}$ bewegt. Es wird nun ein Kreisbogen mit dem Radius $\frac{\pi}{2}$ gezeichnet. Der Wert $\frac{\pi}{2} \cos \psi^{\prime}$ läßt sich einfach ablesen. Um den \cos dieses Wertes zu bekommen, zeichnet man über der Abszisse die cos-Funktion auf und kann nun auf dieser Kurve den endgültigen Wert von $\cos \left(\frac{\pi}{2} \cos \psi\right)$ ablesen. In einem Polarkoordinatensystem wird dieser Wert auf einem Radiusvektor, der den Winkel ψ gegen die x-Achse hat, aufgetragen. Dies geschieht nacheinander für verschiedene ψ-Werte (Bild 6). Führt man diese Konstruktion für verschiedene Abstände d durch, so ergeben sich die Horizontalcharakteristiken der horizontalen aus zwei Einzeldipolen bestehenden Dipolzeile, wie sie Bild 7 zeigt.

Die Hauptstrahlungsrichtung liegt bei $\psi=\mathbf{9 0}$. Für $d<\frac{\lambda}{2}$ gibt es keine Richtung, in der die Strahlung vollkommen unterdrückt wird. Es tritt nur eine Schwächung für $\psi=0$ auf.
Für $d=\frac{\lambda}{2}$ gibt es eine ausgeprägte Nullstrahlung für $\psi=0$. Für $d>\frac{\lambda}{2}$ treten Nebenzipfel für $\psi=0$ auf. Sie werden für $d=\lambda$ ebenso groß wie die Hauptkeule. Die Nullstrahlungsrichtung liegt dort, wo

$$
\frac{\pi \cdot d}{\lambda} \cdot \cos \psi=(2 n+1) \cdot \frac{\pi}{2} \quad n=0,1,2 \ldots
$$

wird. Für $d=\lambda$ z. B. ergibt sich:

$$
\cos \psi=\frac{1}{2} \text { oder } \psi=60^{\circ}
$$

1.2 Die vertikale Dipolzeile (Horizontalcharakteristik)

Die Anordnung der Einzeldipole einer vertikalen Dipolzeile zeigt Bild 8. Man erkennt sofort, daß die Wellenzüge von Dipol 1 und Dipol 2 bis zu einem Aufpunkt P, dessen Abstand r vom Koordinatenursprung wieder groß ist gegen d, gleiche Wege zurüdkzulegen haben. Es tritt hier also keir Laufzeitunterschied und demzufolge auch keine Interferenz auf. Da uns zunächst nur die Horizontalcharakteristik interessiert, bewegt sidh der Punkt P nur in der xy-Ebene. In dieser Ebene ergibt sich die Richtcharakteristik, wie sie Bild 1a zeigt. Da die Anordnung jedoch zwei Dipole umfaßt, verdoppelt sich die Amplitude der Feldstärke.

1.3 Die vertikale Dipollinie (Horizontalcharakteristik)

Bei einer vertikalen Dipollinie liegen die Dipolachsen auf einer Geraden, wie Bild 9 zeigt. Die Uberlegungen sind hier die gleichen, wie in Abschnitt 1.2. In der xy-Ebene tritt jetzt keine Richtwirkung auf. Die vertikale Dipollinie ist in der xy-Ebene ein Rundstrahler wie ein senkrecht stehender Einzeldipol (Bild 1b). Lediglich die Amplitude der Feldstärke ist wieder doppelt so groß wie beim Einzeldipol.

1.4 Die horizontale Dipollinie (Horizontalcharakteristik)

Die Anordnung ist in Bild 10 gezeigt. Der Aufpunkt P bewegt sich wieder nur in der xy-Ebene (Horizontalcharakteristik].

Bild 7 b . Horizontalcharakteristik einer horizontalen Dipolzeile (zwei Dipole) für $\frac{d}{i}=\frac{1}{2} ;$ b 1 zeigt die grafische Konstruktion nach Bild 5. Abszisse: $-\frac{x}{2}$ bis $\frac{a}{2}$. Ordinate: von 0 über 1 bis 0. b 2 zeigt das Polardiagramm

Um die Richtwirkung mathematisch beschreiben zu können, müssen wir zuerst die Richtcharakteristik des Einzeldipols, wie sie Bild 1a zeigt, mathematisch erfassen. Sie soll hier nicht theoretisch abgeleitet werden, da man sich leicht überzeugen kann, daB die Funktion $A \cdot|\sin \psi|$ wirklich die Charakteristik von Bild 1 ergibt.

Die weitere Berechnung erfolgt vollkommen analog zu der in Abschnitt 1.1. Der Wegunterschied beträgt wiederum:

$$
\Delta \mathrm{s}=\mathrm{d} \cdot \boldsymbol{\operatorname { c o s }} \dot{\psi}
$$

Bild 7g. Horizontalcharakteristik einer horizontalen Dipolzeile (zwei Dipole) für
$\frac{d}{i}=\frac{3}{4}$:
c $1=$ Abszisse:
$-\frac{3}{4} \pi \ldots+\frac{3}{4} \pi$;
c $2=$ Polardiagramm

Bild 7d. Horizontalcharakteristik einer borizontalen Dipolzeile (zwei Dipole) für $\frac{d}{2}=1: \mathrm{d} 1=$ Abszisse: $-\pi \ldots+\pi ; d_{2}=$ Polardiagramm

Bild 10.
$a=$ Horizontale Dipollinie; $b=$ die Oberlagerung der Horizontal-Charakteristiken der beiden Dipole, nach Bild 10a

und der Phasenunterschied:

$$
\begin{equation*}
\delta=\frac{2 \pi}{\lambda} \cdot \Delta s=\frac{2 \pi}{\lambda} \cdot d \cdot \cos \psi \tag{5}
\end{equation*}
$$

Die Felder von Dipol 1 und Dipol 2 addieren sich im betrachteten Aufpunkt P geometrisch. Im Gegensatz zu Abschnitt 1.1 ist bei der Addition anstelle der konstanten

Amplitude A die variable Amplitude $A \cdot|\sin \psi|$ zu setzen, and man erhält:

Die rechte Seite der Gl. (6) besteht aus zwei Faktoren, von denen der eine die Richtwirkung des Einzeldipols beschreibt und der andere die Richtwirkung der Gruppe (Gruppenfaktor). Diese Gleichungsform ist typisch für Dipolgruppen. Setzen sich Dipolzeilen bzw. Dipollinien zu mehrschichtigen Antennen (zwei- oder dreidimensional) zusammen, so bleibt Gl. (6) im Prinzip erhalten; es kommt lediglich auf der rechten Seite noch ein sogenannter Obergruppenfaktor hinzu.

Die Auswertung der Gl. (6) zeigt Bild 11, wieder für verschiedene. Abstände d. Diese Diagramme ergeben sich unmittelbar aus Bild 7 durch Multiplikation mit $|\sin \psi|$.

Da sich Gl. (6) und Gl. (4) nur durch den Faktor $|\sin \psi|$ unterscheiden, stimmen die Bilder 7 und 11 näherungsweise überein. Die Strahlungskeulen in Bild 11 sind jedoch wegen $|\sin \psi| \leq 1$ schmaler, und es treten hier weitere Nullstellen der Strahlung auf für:

$$
|\sin \psi|=0 \quad \text { bzw. } \quad \psi=0, \pi \ldots
$$

Der Vollständigkeit wegen sollen noch die Vertikalcharakteristiken der bisher besprochenen Dipolgruppen angegeben werden. Die Gleichungen werden jetzt etwas komplizierter, da die Vertikaldiagramme nicht nur vom Zenitwinkel φ, sondern auch von ψ abhängen (im Gegensatz zu den Horizontaldiagrammen, wo $\varphi=0$ war).
(Blatt 3 und 4 erscheinen in einem der nächsten Hefte)

Bild 11. Horizontalcharakteristik der horizontalen Dipollinie

$$
\begin{aligned}
& 4 a \\
& \frac{d}{\lambda}=\frac{1}{4}
\end{aligned}
$$

1.5 Die horizontale Dipolzeile (Vertikalcharakteristik)

Der betrachtete Aufpunkt P wandere jetzt in einer Ebene $\psi=$ const., wobei ψ natürlich jeden Wert zwischen 0 und π einnehmen kann. Zum besseren Verständnis ist die horizontale Dipolzeile noch einmal räumlich in Bild 12 dargestellt.

Bild 12. Bestimmung des Wegunterschiedes bei einer horizontalen Dipolzeile zur Konstruktion der Vertikalcharakteristik

Man entnimmt daraus, daß für die beiden Wellenzüge der Dipole 1 und 2 ein Wegunterschied

$$
\begin{equation*}
\Delta s=d \cdot \cos \varphi \cdot \cos \psi \tag{7}
\end{equation*}
$$

besteht.
Die Addition der beiden Felder im Aufpunkt P erfolgt wie in Abschnitt 1.1 beschrieben (Gl. 3). Es ist jedoch zu berücksichtigen, daB wir das Diagramm nicht mehr ausschließlich in der $x y$-Ebene betrachten; das bedeutet, daB anstelle der konstanten Amplitude A der Wert

$$
\begin{equation*}
\left.A \cdot \cos \varphi^{1}\right) \tag{7a}
\end{equation*}
$$

zu setzen ist. Es ergibt sich also

$$
\begin{equation*}
\left|A_{\Omega}\right|=2 A \cdot|\cos \varphi| \cdot \cos \left(\pi \cdot \frac{d}{\lambda} \cdot \cos \psi \cdot \cos \varphi\right) \tag{8}
\end{equation*}
$$

In Gl. (8) ist die Gl. (4) als Spezialfall für $\varphi=\mathbf{0}$ enthalten. Setzt man in Gl. (8) den Winkel $\psi=0$, so erhält man das sogenannte Hauptvertikaldiagramm. Es unterscheidet sich für verschiedene $\frac{d}{\lambda}$-Werte prinzipiell nicht von den Richtdiagrammen in Bild 7. Der Faktor $\cos \varphi$ bewirkt lediglich, daß die Strahlung im Vertikaldiagramm überall kleiner ist, als die entsprechende Strahlung im Horizontaldiagramm. Die y-Achse in Bild 7 ist für das Vertikaldiagramm in die z-Achse umzubenennen.

[^0]

Bild 13. Vertikale Dipolzeile

Bild 14. Dipolzeile aus drei Dipolen. Bestimmung des Phasenunterschiedes der Wellenzüge in der horizontalen Ebene

Bild 15. Vektorielle Addition der Wellenziige der drei Dipole
bzw. relativ zu Dipol 2:

$$
\delta_{32}=\frac{2 \pi}{\dot{i}} \cdot d \cdot \cos \psi=\delta
$$

In P sind also drei Wellen zu addieren wie in Bild 15. Man erhält:

$$
\begin{align*}
& \left|A_{s}\right|=A \cdot(1+2 \cos \delta) \\
& \left|A_{S}\right|=A \cdot\left[1+2 \cos \left(\frac{2 \pi}{i} \cdot d \cdot \cos \psi\right)\right] \tag{12}
\end{align*}
$$

Wie man sieht, beträgt die Maximalamplitude:

$$
\left|A_{s}\right| \max =3 A \quad \text { (Hauptstrahlungsrichtung) }
$$

Bild 16. Horizontalcharakteristik einer horizontalen Dipolzeile; 3 Dipole, $\frac{d}{\lambda}=\frac{1}{2}$. a $=$ grafische Konstruktion (nach Bild 5). Die Werte der cos Funktion sind mit dem Faktor 2 multipliziert und uber der Linie +1 aufgetragen. $b=$ Polardiagramm

Die Richtung, in der keine Strahlung auftritt, ergibt sich aus:

$$
1+2 \cos \left(2 \pi \frac{d}{2} \cdot \cos \psi^{\prime}\right)=0
$$

Für den häufigsten Fall $\frac{d}{\lambda}=\frac{1}{2}$ erhält man:

$$
\psi=48,6^{\circ}
$$

Als Halbwertsbreite ψ_{0} einer Antenne bezeichnet man den

Winkel, bei dem die Amplitude $\left|A_{s}\right|=\frac{1}{\sqrt{2}} \cdot\left|A_{s}\right|_{\text {max }}$ ist. Im Fall $\frac{d}{\hat{i}}=\frac{1}{2}$ ist also

$$
1+2 \cos \left(\pi \cdot \cos \psi_{\mathrm{H}}\right)=\frac{3}{\sqrt{2}}
$$

zu setzen, und man erhält

$$
\psi_{\mathrm{H}}=71,9^{\circ}
$$

bzw.

$$
\psi_{0}=2 \cdot\left(90^{\circ}-71,9^{\circ}\right)=36,2^{\circ}
$$

Man erkennt, daß bereits bei drei Einzeldipolen eine beträchtliche Richtwirkung auftritt.

Bild 16 schließlich zeigt die Konstruktion der Richtcharakteristik für $\frac{d}{\lambda}=\frac{1}{2}$ wie sie bereits in Bild 5 beschrieben wurde. Man beachte, daß im Gegensatz zur horizontalen Dipolzeile mit zwei Dipolen Nebenzipfel auftreten, die jedoch nur $33,3 \%$ der Amplitude der Hauptkeule haben.

2 Speisung der Einzeldipole einer Antenne mit Strömen gleicher Amplitude und verschiedener Phase

In Abschnitt 1 wurden ausschließlich die Richtcharakteristiken von Dipolgruppen betrachtet, bei denen die Einzeldipole mit Strömen gleicher Amplitude und Phase erregt wurden. Durch die verschieden langen Wege der einzelnen Wellen bis zu einem betrachteten Aufpunkt P traten Interferenzen auf, die zu einer Richtwirkung der Dipolgruppe führen. Die Hauptstrahlungsrichtung (maximale Feldstärke) war dabei stets senkrecht zur Antennenfläche, und man konnte nicht zwischen Vorder- und Rückseite der Antenne unterscheiden, d. h. die Diagramme waren immer spiegelbildlich zur Antennenfläche

Es sind nun Antennen zu betrachten, bei denen die Interferenz nicht mehr nur auf Wegunterschiede, sondern auch auf verschiedene Phasen der Dipolströme zurückzuführen ist.

Dabei sind zwei verschiedene Phasenwinkel zu unterscheiden, nämlich solche, die durch Wegunterschiede entstehen und solche, die durch die Speisung der Einzeldipole vorgegeben sind. Die ersteren, die bisher mit δ bezeichnet wurden, sollen jetzt $\delta_{\mathrm{s}}\left(\mathrm{s}=\right.$ Weg) und die anderen $\delta_{\mathrm{p}}(p=$ Phase) heiBen.

2.1 Die Richtcharakteristik der horizontalen Dipolzeile

Im ersten Beispiel betrachten wir wieder die einfache Dipolgruppe, wie sie Bild 12 zeigt. Für den Winkel δ_{s} gilt wie bisher:

$$
\delta_{8}=\frac{2 \pi}{\lambda} \cdot d \cdot \cos \psi \cdot \cos \eta
$$

AuBerdem soll jedoch der Dipol 2 mit einem Strom gespeist werden, der die Phase δ_{p} gegenüber dem Strom in Dipol 1 hat.

In einem fernen Aufpunkt P ergibt sich als Gesamtphasendifferenz δ der Wellenzüge von Dipol 1 und 2:

$$
\delta=\delta_{\mathrm{p}}+\delta_{s}
$$

Dabei ist δ_{p} positiv einzusetzen, wenn der Strom in Dipol 2 nacheilt ${ }^{1}$]. Die Richtcharakteristik der horizontalen Dipolzeile lautet somit in Analogie zu Gleichung 8

[^1]

Erläuterung zu a 1: Nach Gl. 14 ist zu ermitteln:

Also läuft a für ψ von $0 . .180^{\circ}$
auf Skala 1 von $\pi / 4 \ldots-\pi / 4$ und b für w von $0 . . .180^{\circ}$ auf Skala 2 von $\pi / 2 \ldots 0^{\circ}$ Damit läuft die cos-Funktion zum Argument b für ψ von $0^{\circ} \ldots 180^{\circ}$ von $0 . .1$

Bild 17a. Die Horizontaldarakteristik der horizontalen Dipolzeile bei Erregung der beiden Dipole mit um 90° gegeneinander phasenverschobenen Strömen für d/i-1/4; a 1 - grafische Konstruktion (vgl. Bild 7a 1), a 2 - Polardiagramm. Die ausgezogene Kurve gilt für die Horizontalcharakteristik mit ψ von $0^{\circ} \ldots 300^{\circ}$, die gestrichelte Kurve gilt für die Vertikalcharakteristik; anstelle y ist z und anstelle ψ ist φ zu setzen

$$
\begin{aligned}
& \left|A_{5}\right|=2 \cdot A|\cos \varphi| \cdot \cos \frac{\delta}{2} \\
& \left|A_{8}\right|=2 \cdot A|\cos \varphi| \cdot \cos \left(\frac{\delta_{\square}}{2}+\pi \cdot \frac{d}{2} \cdot \cos \psi \cdot \cos \varphi\right)(13)
\end{aligned}
$$

Die Horizontalcharakteristik ergibt sich aus Gleichung 13 für $\varphi=0$. Sie lautet

$$
\begin{equation*}
\left|A_{\delta}\right|=2 A \cdot \cos \left(\frac{\delta_{\mathrm{p}}}{2}+\pi \cdot \frac{d}{\lambda} \cos \psi\right) \tag{14}
\end{equation*}
$$

Man erkennt aus Gleichung (14) folgendes:
a) Die maximale Strahlung beträgt unabhängig von δ_{p} wieder 2 A ;
b) die Richtung, in der diese maximale Strahlung auftritt und die als Hauptstrahlungsrichtung bezeichnet wird, ergibt sich, wenn das Argument des cos in Gleichung (14) $n \cdot \pi$, mit $n=0,1,2 \ldots$, wird. Man erkennt, daB diese Richtung von δ_{D} abhängt. Damit ist es möglich, das Richtdiagramm durch Änderung von δ_{p} zu schwenken (elektrische Diagrammschwenkung im Gegensatz zur mechanischen Diagrammschwenkung, bei der die Antenne gedreht wird).
Zur Auswertung der Gleichung (14) soll angenommen werden, daß der Strom im Dipol 2 um 90° gegen den Strom in Dipol 1 nacheilt, also:

$$
\delta_{\mathrm{p}}=+\frac{\pi}{2}
$$

Die Hauptstrahlungsrichtung $\psi_{\max }$ ergibt sich aus:
$\frac{\delta_{\mathrm{p}}}{2}+\pi \cdot \frac{d}{\lambda} \cdot \cos \psi_{\max }=n \cdot \pi \quad$ mit $n=0,1,2 \ldots$
Die Werte, die n durchlaufen kann, hängen hierbei von δ_{p} und $\frac{d}{\lambda}$ ab. Wir wollen wieder wie bisher die Diagramme für $\frac{d}{\lambda}=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$ bestimmen.

Für $\frac{d}{\lambda}=\frac{1}{4}$ ergibt Gleichung (15)

$$
\frac{\pi}{4}+\frac{\pi}{4} \cdot \cos \psi_{\max }=0
$$

bzw.

$$
\psi_{\max }=180^{\circ}
$$

Für $\frac{d}{\lambda}=\frac{1}{2}$ ergibt sich analog:

$$
\frac{\pi}{4}+\frac{\pi}{2} \cdot \cos \psi_{\max }=0
$$

bzw.

$$
\psi_{\max }=180^{\circ} \pm 60^{\circ}
$$

Für $\frac{d}{\lambda}=\frac{3}{4}$ ist: $\frac{\pi}{4}+\frac{3 \pi}{4} \cdot \cos \psi_{\max }=0 \quad$ oder $=\pi$

$$
\begin{array}{lll}
\text { bzw. } & \psi_{0} \max =180^{\circ} \pm 70,5^{\circ} & \text { (für } \mathrm{n}=0 \text {) } \\
\psi_{1 \max }=0^{\circ} & \text { (für } \mathrm{n}=1 \text {) }
\end{array}
$$

Für $\frac{d}{\lambda}=1$ ist: $\frac{\pi}{4}+\pi \cdot \cos \psi_{\text {max }}=0 \quad$ oder $=\pi$
$\begin{array}{ll}\text { bzw. } \quad \psi_{0 \max }=180^{\circ} \pm 75,5^{\circ} & \text { (für } n=0 \text {) } \\ \psi_{1} \max ^{\circ}= \pm 41,5^{\circ} & \text { (für } \mathrm{n}=1 \text {) }\end{array}$
Die Nullstellen des Diagramms (Nullstrahlungsrichtungen ψ_{0}) ergeben sich für:

$$
\left|A_{8}\right|=0
$$

bzw.
$\frac{\delta_{p}}{2}+\pi \cdot \frac{d}{\lambda} \cdot \cos \psi_{0}=(2 n+1) \frac{\pi}{2} \quad$ für $n=0, \pm 1 \ldots$
Daraus folgt ganz allgemein:

$$
\begin{equation*}
\cos \psi_{0}=\frac{(2 n+1) \pi-\delta_{\mathrm{p}}}{2 \pi \cdot \frac{d}{\lambda}} \tag{16}
\end{equation*}
$$

Da $|\cos \psi| \leq 1$ ist, bedeutet das, daB der Zähler in Gleichung (16) stets kleiner oder höchstens gleich dem Nenner sein darf, damit überhaupt Nullstrahlung auftreten kann. Für kleine Abstände d zwischen den Dipolen treten also unter Umständen keine Nullstellen im Diagramm auf.

In unserem Beispiel ist:
für $\frac{d}{\lambda}=\frac{1}{4} \quad \psi_{0} \quad=180^{\circ}$

$$
\frac{d}{\lambda}=\frac{1}{2} \quad \psi_{0} \quad= \pm 60^{\circ}
$$

$$
\frac{d}{2}=\frac{3}{4} \quad \psi_{0.0}= \pm 70,5^{\circ} \quad \text { (für } n=0 \text {) }
$$

$$
\psi-1,0=180^{\circ}
$$

$$
\text { (für } n=-1 \text {) }
$$

$$
\text { (für } \mathrm{n}=0 \text {) }
$$

$$
\text { (für } n=-1 \text {) }
$$

Die grafische Auswertung der Gleichung (14) zeigt Bild 17.

Der Idealfall, der in der Praxis angestrebt wird, nämlich $\varphi_{\max }=180^{\circ}$ und $\varphi_{0}=0^{\circ}$, wird mit $\frac{d}{\lambda}=\frac{1}{4}$ und $\delta_{\mathfrak{p}} \frac{\pi}{2}$ erreicht. Allerdings ist hierbei der Óffnungswinkel ziemlich grob (180°). Man nimmt deshalb einen kleinen Nebenzipfel in Kauf für $\psi=0$, wie er für $\frac{d}{\lambda}>\frac{1}{4}$ auftritt, um eine bessere Richtwirkung zu erreichen.

Bild 17b. Die Horizontalcharakteristik der horizontalen Dipolzeile bei Erregung der beiden Dipole mit um 90° gegeneinander phasenverschobenen Strömen für $\frac{d}{i}=\frac{1}{2}$

Bild 17 c . Die Horizontalcharakteristik der horizontalen Dipolzeile bei Erregung der beiden Dipole mit um 90° segeneinander phasenverschobenen Stromen
für $\frac{d}{\lambda}=\frac{3}{4}$

Bild 17 d . Die Horizontalcharakteristik der horizontalen Dipolzeile bei Erregung der beiden Dipole mit um 90° gegeneinander phasenverschobenen Strömen für $\frac{d}{i}=1$

Für den Fall $\delta_{\mathrm{p}}=\pi$ geht Gleichung (14) über in:

$$
\left|A_{8}\right|=-2 A \cdot \sin \left(\pi \frac{d}{\hat{\lambda}} \cos \psi\right)
$$

(Blatt 5 erscheint in einem der nächsten Hefte)

2.1 Die Richtcharakteristik der horizontalen Dipolzeile

 (Fortsetzung)Man sieht, daB unabhängig von $\frac{d}{\lambda}$ für $\psi= \pm \frac{\pi}{2} ; A_{s} \mid=0$ ist. Derartige Dipolgruppen werden in der Peiltechnik verwendet (Minimumpeilung). Die horizontale Richtharakteristik für $\delta_{\mathrm{i}}=\pi$ und $\frac{d}{\hat{\lambda}}=\frac{1}{4}$ zeigt Bild 18 .

Die Hauptvertikalcharakteristik der horizontalen Dipolzeile ergibt sich aus Gleichung 13 für $\psi=0$:

$$
A_{r} \left\lvert\,=2 A \cdot \cos \varphi \cdot \cos \left(\frac{\partial_{p}}{2}+\pi \frac{d}{2} \cdot \cos \varphi\right)\right.
$$

Sie unterscheidet sich von der Horizontalcharakteristik (Gleichung 14) nur durch den Faktor $\cos q$ und ist in Bild 17 gestrichelt eingezeichnet.

2.2 Die Richtcharakteristik der vertikalen Dipollinie

Die Dipolgruppe, deren Richtdiagramm bestimmt werden soll, ist in Bild 9 dargestellt. Die Uberlegungen zur Bestimmung des Diagramms erfolgen vollkommen analog zum Beispiel 2.1. Die Gesamtphasendifferenz der Wellenzüge im Aufpunkt P ist:

$$
\delta=\delta_{\mathrm{p}}+\delta_{\mathrm{s}}=\delta_{\mathrm{p}}+2 \pi \frac{d}{\lambda} \cdot \sin q
$$

Die Summenamplitude A_{5} in P ist:

$$
\begin{equation*}
\left|A_{*}\right|=2 A \cdot|\cos \varphi| \cdot \cos \left(\frac{\delta_{\mathrm{p}}}{2}+\pi \frac{d}{\lambda_{2}} \cdot \sin \varphi\right) \tag{17}
\end{equation*}
$$

δ_{1}, ist positiv einzusetzen, wenn der Strom in Dipol 1 voreilt. Zur Auswertung der Gleichung (17) nehmen wir wieder
$\delta_{\mathrm{p}}=\frac{\pi}{2}$ an. Damit ergibt sich das Horizontaldiagramm $(\%=0):$

$$
A^{\prime} \left\lvert\,=2 A \cdot \cos \frac{\pi}{4}=\sqrt{2} A\right.
$$

d. h. in Ebenen, die senkrecht auf der Dipollinie stehen, tritt keine Richtwirkung auf (siehe Beispiel 1.3).

Die Hauptvertikalcharakteristik $(\%=0)$ entspricht der Gleichung (17).

Die Auswertung zeigt Bild 14 für $\frac{d}{\lambda}=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$.
Damit die grafische Lösung der Gleichung 17 wie bisher erfolgen kann, ersetzen wir rein formal φ durch φ^{*}, wobei $\varphi+\varphi^{*}=90^{\circ}$ sein soll.

Aus Gleichung 17 wird dann:

$$
A_{\mathrm{s}}|=2 \mathrm{~A}| \sin \varphi^{\star} \left\lvert\, \cdot \cos \left(\frac{\delta_{\mathrm{p}}}{2}+\pi \frac{d}{i} \cos \varphi^{\star}\right)\right.
$$

Beim Obertragen der Amplituden auf Polarkoordinaten ist darauf zu achten, daB

$$
\psi=90^{\circ}-q^{\star}
$$

2.3 Zusammenfassung

Die Speisung der Einzeldipole einer Dipolgruppe mit verschiedenphasigen Strömen erlaubt eine elektrische Diagrammschwenkung, d. h. die Hauptstrahlungsridhtung hängt vom

Bild 18. Die Horizontalcharakteristik der horizontalen Dipolzeile bei Erregung der beiden Dipole mit um 180° gegeneinander phasenverschobenen Strö̀men.

$$
\mathrm{d} / \lambda=1 / 4
$$

a $=$ grafische Konstruktion:
$b=$ Polardiagramm

Bild 19b.
Die Hauptvertikalcharakteristik der vertikalen Dipollinie bei Erregung der beiInne bei Erregung der bel-
den Dipole mit um 90 gegeneinander phasenversctio benen Stromen für $d^{\prime} / \lambda=1 / 2$

4 Bild 19c. Die Hauptvertikalcharakteristik der vertikalen Dipollinie bei Erregung der beiden Dipole mit um 90° gegeneinander phasenverschobenen Strömen fïr $d / 2=3 / 4$

Bild 19d.
Die Hauptvertikalcharakteristik der vertikalen Dipollinie bei Erregung der bejden Dipole mit um 90° gegeneinander phasenverschobenen Strömen für $\mathrm{d} / \lambda=1^{\circ}$

Die ausgezogenen Kurven geben die Vertikalcharakteristik an, q von $0 \ldots 360^{\circ}$. Die gestrichelt gezeichneten Kurven entsprechen den in Bild 17 ausgezogen dargestellten; denn in Gl. 14 triti der Faktor: $\cos \left(\frac{\delta p}{2}+\pi \cdot \frac{d}{2} \cdot \cos \psi\right)$ und in Gl. 17 der Faktor: $\cos \left(\frac{\delta p}{2}+\pi \cdot \frac{d}{\lambda} \sin \varphi\right)$ auf. Der alleinige Unterschied $\cos \rightarrow \sin$ ist durch Drehung um 90° berícksichtigt. Aus diesen gestrichelt gezeidneten Kurven lassen sich durch Multiplikation mit cos φ, siehe Gl, 17, die ausgezogenen Kurven ermittels

Phasenunterschied der Dipolströme ab. Die Richtcharakteristiken sind nicht mehr symmetrisch zur Antennenfläche, wie es bei Speisung mit gleichphasigen Strömen der Fall war. Durch geeignete Wahl von δ_{p} und $\frac{\mathrm{d}}{\lambda}$ kann erreicht werden, daB in einer um 180° gegen die Hauptstrahlungsrichtung gedrehten Richtung Nullstrahlung auftritt.

Grundsätzlich kann man sagen, daß für $\frac{d}{\lambda} \leq \frac{1}{2}$ die Hauptstrahlungsrichtung auf der Seite des Dipols liegt, der die nacheilende Stromphase hat.

3 Speisung der Einzeldipole einer Antenne mit Strömen gleicher Phase und verschiedener Amplitude

In Abschnitt 1.9 wurde das Horizontaldiagramm einer horizontalen Dipolzeile, bestehend aus drei Einzeldipolen, bestimmt (Bild 14), wobei die Ströme in den Dipolen in Amplitude und Phase übereinstimmten. Die Richtcharakteristik dieser Dipolgruppe zeigt Bild 16. Die Halbwertsbreite der Hauptkeule war hierbei $\psi_{0}=36,2^{\circ}$, und die Amplitude der Nebenzipfel betrug 33,3\% der Amplitude der Hauptkeule.

Im folgenden Abschnitt sollen die Nebenzipfel durch geeignete Speisung der Einzeldipole zu einem Minimum gemacht werden. Dazu werden die Ströme in den Dipolen 1 und 3 (Bild 14) zu x A gewählt, wobei A die Amplitude des Stromes in Dipol 2 ist und x eine beliebige rationale Zahl darstellt, die so bestimmt wird, daß die Nebenzipfel minimal werden. Die Phasen der drei Ströme stimmen überein.

Man erhält dann als Summenamplitude im Fernfeld aus Gl. 12

$$
\left|A_{s}\right|=A\left[1+2 x \cdot \cos \left(\frac{2 \pi}{\lambda} \cdot d \cdot \cos \psi\right)\right]
$$

Die maximale Amplitude $\left|A_{8}\right|_{\mathrm{H}} \max$ in Hauptstrahlungsrichtung tritt für $\psi= \pm \frac{\pi}{2}$ auf und beträgt

$$
\left.A_{\mathrm{s}}\right|_{\max }=(1+2 x) \cdot A
$$

Die Nebenzipfel liegen bei $\psi=0 \quad \mathrm{~b} w . \psi=\pi$ und ihre Amplitude beträgt für

$$
\frac{d}{\lambda}=\frac{1}{2}
$$

$$
A_{8} \mid N \max =(1-2 x) \cdot A
$$

Man sieht hieraus bereits, daß für $x=\frac{1}{2}$ die Nebenzipfel vollkommen verschwinden.

Wenn also in der Dipolgruppe von Bild 14 die Dipole 1 und 3 mit dem halben Strom von Dipol 2 gespeist werden, hat die Gruppe keine Nebenzipfel.

Nun soll noch die Halbwertsbreite ψ_{0} berechnet werden. Dazu bestimmt man zunächst den Winkel ψ H, bei dem $\left|A_{s}\right|$ auf $\frac{\left|A_{B}\right|_{\max }}{V^{2}}$ abgesunken ist:

$$
\left|A_{s}\right|=A\left[1+2 x \cdot \cos \left(\frac{2 \pi}{2} \cdot d \cdot \cos \psi\right)\right]
$$

unter Einsetzen von:

$$
\begin{aligned}
& d / \lambda=1 / 2 \\
& x=1 / 2
\end{aligned}
$$

und ersetzen von:

$$
\left|A_{8}\right| \text { durch } \frac{\left|A_{8}\right|_{\max }}{\sqrt{2}}=\frac{(1+2 x) \cdot A}{\sqrt{2}}=\frac{2 A}{\sqrt{2}}
$$

erhält man:

$$
\begin{aligned}
\frac{2 A}{V \overline{2}} & =A\left[1+\cos \left(\pi \cdot \cos \psi_{\mathrm{H}}\right)\right] \\
0,41 & =\boldsymbol{\operatorname { c o s }}\left(\pi \cdot \cos \psi_{\mathrm{H}}\right) \\
\psi_{\mathrm{H}} & =68,6^{\circ}
\end{aligned}
$$

Damit ergibt sich

$$
\psi_{\mathrm{e}}=2\left(\frac{\pi}{2}-\psi_{\mathrm{H}}\right)=42,8^{\circ}
$$

Die Unterdrückung der Nebenzipfel wurde also auf Kosten der Richtwirkung erreicht. Aud bei Antennengruppen mit mehr als drei Einzeldipolen gelingt es immer durch geeignete Wahl der Stromamplituden, die Nebenzipfel zum Verschwinden zu bringen. In der Praxis wird man sich im allgemeinen auf eine Verringerung der Nebenzipfel beschränken, um die Hauptkeule nicht allzu breit werden zu lassen. Wichtig ist, daß diese Verringerung stets durch eine Amplitudenabnahme der speisenden Ströme zu den Antennenrändern hin erreicht wird.

[^0]: 1) Der Unterschied von Gleichung 5a $A \cdot \sin p$ und Gleichung $7 a A \cdot \cos F$ erklärt sich dadurch, daB der Winkel ψ (Bild 1) von der (dort in x-Richtung liegenden) Dipolachse an gezählt wird. Der Winkel tp (Bild 12) wird von der xy-Ebene aus, in Richtung der z-Achse gezählt, d. h. $y=0$ bedeutet einen Strahl in Richtung der Dipolachse, $\psi=0$ einen Strahl, senkrecht zur Dipolachse.
[^1]: ${ }^{1)}$ Für einen Punkt P in der Halbebene $z=0, x>0$ eilt die Welle des Dipols 2 immer nach. da sie den weiteren Weg bis zum Punkt P hat. Wird der Dipol 2 zusätzlich mit einem nacheilenden Strom gespeist, so ist die Phase $\delta_{\mathrm{p}} \mathrm{zu} \delta_{\mathrm{g}}$ hinzu zu addieren.

