Die Bestimmung einfacher Antennendiagramme
 Teil II: Dipol vor einer leitenden Wand und Flächenstrahler

1 Der Einfluß einer Ieitenden Wand auf das Feld eines Einzeldipols

Eine ideale einseitige Richtwirkung für einen Einzeldipol oder eine Dipolgruppe kann erreicht werden, wenn man die Antenne vor einer elektrisch leitenden Wand aufstellt. Vielfach wird auch der EinfluB der Erdoberfläche auf das Antennenfeld dadurch berücksichtigt, daß man die Erdoberfläche als vollkommen leitend annimmt, so daß hier die gleichen Oberlegungen gelten, wie bei einer leitenden Wand.

Im folgenden soll gezeigt werden, wie der Einfluß einer leitenden Fläche erfaBt werden kann. Es sind hierbei zwei Fälle zu unterscheiden, nämlich Dipolachse und Wand sind parallel zueinander, oder sie stehen senkrecht aufeinander.

1.1 Dipolachse verläuft parallel zur leitenden Fläche

Die Anordnung. die wir betrachten wollen, zeigt Bild 1. Die leitende Wand liege in der y-z-Ebene; der Einzeldipol befinde sich im Abstand d von der Wand auf der x-Achse. Wir müssen nun - um die folgenden Uberlegungen durchzuführen - auf einige Grundlagen zurückgreifen. Bekanntlich kann

Bild 1. Dipolachse parallel zu einer leitenden Fläche
ein Dipol als Schwingkreis aufgefaBt werden, bei dem sich die Energie einmal im Magnetfeld und einmal im elektrischen Feld befindet. Wir betrachten nun den Augenblick, in dem sich die gesamte Energie im elektrischen Feld befindet. Zu dieser Zeit ist der Strom im Dipol und damit auch das Magnetfeld um den Dipol herum gleich Null. Es besteht lediglich ein elektrisches Feld, wie es Bild $2 a$ zeigt. Wir setzen hierbei willkürlich voraus, dal im betrachteten Augenblick das obere Ende des Dipols positiv und das untere negativ geladen sei, so daß das elektrische Feld wie eingezeichnet verläuft. Errichtet man innerhalb dieses elektrischen Feldes eine leitende Wand, wie Bild $2 b$ zeigt, so sieht man, daB die elektrischen Feldlinien unter verschiedenen Winkeln auf die Wand auftreffen.
In einem beliebigen Punkt A der Wand zerlegen wir nun den Vektor der elektrischen Feldstärke E in seine Komponenten E_{z} und E_{x} (Bild 3). Die leitende Wand bewirkt, da sie

Bild 2. Feldverteilung um einen Dipol zu einem Zeitpunkt, in dem $i=0$, Magnetfeld $=0$ ist; a) im freien Raum: b) eine Wand verhindert die ungestörte Ausbildung des elektrischen Feldes

Bild 3. Zerlegung des auf eine Wand auftreffenden Vektors E in seine Komponenten E_{z} und E_{x}
ja eine Åquipotentialfläche ist, daB die Komponente E_{Z} verschwindet, denn in einer ideal leitenden Fläche können keine Potentialunterschiede und somit auch keine elektrischen Feldstärken auftreten. Das bedeutet, daB elektrische Feldlinien nur unter einem rechten Winkel auf einen Leiter auftreffen können (Komponente E_{x}). Diese Randbedingung wird erfüllt, wenn man sich spiegelbildlich zum vorgegebenen Dipol einen zweiten Dipol denkt, dessen Ladungszustand gerade umgekehrt ist (Bild 4a). Dieser gespiegelte Dipol erzeugt ein spiegelbildliches elektrisches Feld, dessen Komponenten E_{x}^{\prime} und E_{z}^{\prime} mit den Komponenten E_{x} und E_{z} betragsmäBig übereinstimmen, wobei jedoch E_{z}^{\prime} entgegengesetzt $z u E_{z}$ gerichtet ist. so daß sich beide Komponenten in der leitenden Fläche gerade kompensieren (Bedingung).

Bild 4. Feldverteilung bei Einfügen eines gespiegelten und gegenphasig erregten Dipols; a) die Felder der beiden einzelnen Dipole; b) ihr resultierendes Feld

Als resultierendes Feld ergibt sich das Feld in Bild $4 b$.
Wir wollen nun noch prüfen, ob die Einführung des gespiegelten Dipols auch die Randbedingungen für das magnetische Feld erfüllt.

Das elektrische Feld. von dem wir ausgegangen waren, bricht zusammen und erzeugt im Dipol einen Strom, der von Plus nach Minus flieBt. Dieser Strom umgibt sich mit einem magnetischen Feld, dessen Richtung nach der rechten Handregel bestimmt wird. Es ist in Bild 5a gezeigt (Blickrichtung $=$ -z-Richtung). Ăhnlich wie für das elektrische Feld gilt, daB keine Feldstärkekomponenten tangential zum Leiter auf-

a

b

Bild 5. Das Magnetfeld eines solchen Dipolpaares; af die Zerlegung der beiden Einzelfelder im Punkt B in ihre Komponenten H_{x} und H_{y}; b) das resultierende Magnetfeld. (Die Feldlinien von Bild 5 stehen senkrecht auf denen von Bild 4, orthogonale Anordnung)
treten können, gilt für das magnetische Feld, daB keine Komponenten senkrecht zum Leiter auftreten, da diese Wirbelströme erzeugen und sich selbst vernichten. Das bedeutet in unserem Beispiel, daB sich die Komponenten in x-Richtung aufheben müssen. Wie Bild $5 b$ zeigt, ist dies tatsächlich der Fall.

Die Einführung eines gespiegelten Dipols ist also zulässig und erlaubt den EinfluB einer leitenden Wand zu berechnen. Das resultierende Magnetfeld ist in Bild 5b dargestellt.

1.2 Dipolachse steht senkrecht zur leitenden Fläche

Die Anordnung ist in Bild 6 dargestellt. Die leitende Fläche liegt jetzt in der $x-y$-Ebene. Der Dipol liegt im Abstand d von der $x-y$-Ebene auf der z-Achse.

Bild 6. Dipolachse senkrecht zu einer leitenden Flädre

Konstruktion des resultierenden elektrischen Feldes aus den beiden Einzelfeldern des Dipolpaares. Die leitende Fiäche wirkt so, als ob ein zweiter Dipol mit passender Erregung vorhanden wäre

Wir gehen wieder vom elektrischen Feld aus, wie es Bild 7 zeigt, und wir sehen, daB in einem beliebigen Punkt B zunächst wieder eine (verbotene) tangentiale Komponente E_{Y} und eine normale Komponente E_{z} auftritt. Führen wir wieder einen gespiegelten Dipol ein, so muß dieser den eingezeichneten Ladungszustand haben, damit die E_{Y}-Komponente kompensiert wird. Das bedeutet für die Lösung dieses Problems, daB die Auswirkung der leitenden Fläche berücksichtigt werden kann durch Einführung eines zweiten Dipols, der wiederum den Abstand d von der Fläche hat und gleichphasig mit dem vorgegebenen Dipol erregt ist.
Das gleiche Ergebnis erhält man durch analoge Oberlegung beim magnetischen Feld.

Das bisher Gesagte soll nun anhand eines Beispiels verdeutlicht werden.

1.3 Beispiel

Es soll das Richtdiagramm der Anordnung in Bild 8 bestimmt werden. Der Dipol liege in der y-z-Ebene und habe den Abstand a von der z-Achse und den Abstand b von der y-Achse. Die $x-z$-Ebene und die $x-y$-Ebene seien leitende Flächen.

Bild 8. Anordnung des Dipols im betrachteten Beispiel

Bild 9. Ersatz der Dipolanordnung von Bild 8 durch eine Dipolgruppe aus den vier Dipolел 1. 2, 3. 4

Nach Abschnitt 1.1 und 1.2 muB das gesuchte Richtdiagramm identisch sein mit dem Richtdiagramm der Dipolgruppe in Bild 9. Die Erregung des Dipols 1 erfolgt mit der Amplitude A und der Phase Null. Für Dipol 2 gilt dann nach 1.2 ebenfalls die Amplitude A und die Phase Null. Die Dipole 3 und 4 müssen nach 1.1 mit der Amplitude A, aber mit der Phase π erregt werden.

Wir nehmen zunächst an, da B nur die beiden Dipole 1 und 4 vorhanden wären. Sie können, wenn wieder ein ferner Aufpunkt P betrachtet werden soll als auf der y-Achse liegend

Bild 10. Bestimmung des Wegunterschiedes für die Dipole 1 und 4. Beim Vergleich zu FtA At 11, Bild 12 bzw. Abschn. 2.1 beachte man, daß dort dic Dipole auf der x-Achse, hier aber auf der y-Achse liegen. Dadurch ergibt sich der Untersthied in der Winkelfunktion für ψ, in At 11, Bild 12, $\cos y$, in At 12. Bild 10 . $\sin \%$

angenommen werden. Mit Bild 10 ergibt sich dann ein Wegunterschied von
und als

$$
\delta_{81,4}=2 a \cdot \frac{2 \pi}{\lambda} \cdot \sin \psi \cdot \cos \varphi
$$

Der Gesamtphasenunterschied $\delta_{1.4}=\delta_{\mathrm{s} 1,4}+\delta_{\mathrm{p}}{ }^{1}$) wird dann

$$
\delta_{1,4}=\frac{2 a \cdot 2 \pi}{\lambda} \cdot \sin \psi \cdot \cos \psi+\pi
$$

Als Richtcharakteristik erhält man (s, FtA At 11, Abschn. 2.1)

$$
\begin{gather*}
A^{*}{ }_{81,4}=2 A \cdot \cos \varphi \cdot \cos \frac{\delta_{1,4}}{2}=2 \mathrm{~A} \cdot \cos \varphi \\
\cos \left(\frac{2 \mathrm{a} \pi}{\lambda} \sin \psi \cdot \cos \varphi+\frac{\pi}{2}\right) \tag{1}
\end{gather*}
$$

Die Richtcharakteristik $A^{\star}{ }_{8} 2,3$ für die Dipole 2 und 3 sieht ebenso aus, hat jedoch eine Phasenverschiebung von

$$
\delta=\frac{2 b \cdot 2 \pi}{\lambda} \cdot \sin \varphi
$$

gegenüber der erstgenannten Dipolteilgruppe.
Als Gesamtcharakteristik $A_{\text {g }}$ erhält man somit

$$
\begin{gather*}
A_{8}=2 \cdot A^{\star}{ }_{81,4} \cdot \cos \frac{\delta}{2} \\
\underline{A_{8}}=4 A[\cos \varphi]\left[\cos \left(\frac{2 a \pi}{\lambda} \cdot \sin \psi \cdot \cos \varphi+\frac{\pi}{2}\right)\right] \\
{\left[\cos \left(\frac{2 b \pi}{\lambda} \cdot \sin \varphi\right)\right]} \tag{2}
\end{gather*}
$$

2 Flächenstrahler

Es sollen nun noch die Richtcharakteristiken von Antennen untersucht werden, die nicht mehr aus Einzeldipolen bestehen, wie bisher besprochen. Wir haben es hier mit sogenannten Flächenstrahlern zu tun, wie sie für sehr hohe Frequenzen verwendet werden. Die Ströme in einer solchen Antenne können wieder, wie bei Dipolgruppen, in Amplitude und Phase verändert werden, so daß hier grundsätzlich die gleichen Möglidnkeiten bestehen.

2.1 Flächenstrahler mit konstanter Phase der Ströme

2.1.1 Konstante Strombelegung

Zu bestimmen sei die Richtcharakteristik des Flächenstrahlers in Bild 11. Wir können uns diese Fläche unterteilt denken in unendlich viele kleine Abschnitte mit der Breite dx. Jeder

[^0]

4 Bild 11. Beispiel eines Flächenstrahlers

Bild 13.
Verlauf der Funktion $\frac{A_{s}}{K}=\frac{\sin u}{u}$
nach G1. 4
derartige Abschnitt kann als Einzeldipol aufgefaßt werden, der in einem fernen Punkt P ein Feld mit der Amplitude dA erzeugt. Diese infinitesimal kleine Amplitude rührt daher, daB ein unendlich kleiner Dipol natürlich nur eine verschwindend kleine Strahlung hat.

Bei einer konstanten Strombelegung der Antenne ist

$$
\mathrm{dA} \sim d x
$$

bzw. mit einem Proportionalitätsfaktor p

$$
d A=p \cdot d x
$$

Zur Bestimmung des Phasenunterschiedes δ_{3} der Strahlung eines beliebigen Abschnittes $d x$ im Abstand x vom Ursprung

in bezug auf den Ursprung ist der Flächenstrahler in Bild 12 noch einmal gezeichnet mit Blickrichtung in $-z$-Richtung. Man entnimmt daraus, daß

$$
\Delta \mathrm{s}=\mathrm{x} \cdot \cos \psi
$$

Damit wird der Phasenwinkel

$$
\delta_{\mathrm{s}}=\frac{\Delta s \cdot 2 \pi}{\lambda}=2 \pi \frac{x}{\lambda} \cdot \cos \eta
$$

Wir müssen nun - vollkommen analog zur Berechnung bei Dipolgruppen - die Amplituden dA unter Berücksichtigung der Phasenwinkel summieren. Die Summe geht jetzt allerdings in ein Integral über, und wir erhalten als Summenamplitude ${ }^{2}$):

$$
\begin{equation*}
\underset{-}{A_{B}}=\int_{-\frac{a}{2}}^{+\frac{a}{2}} d A \cdot e^{j \delta s}=p \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{j 2 \pi \frac{x}{\lambda} \cos \psi} \delta x \tag{3}
\end{equation*}
$$

In Gl. 3 stellt der Integrand die Teilstrahlung eines Flächenelementes in komplexer Form dar. Man erhält:

[^1]

Mit
ergibt sich

$$
\begin{gather*}
A_{\mathrm{B}}=p \frac{\sin \left(\pi \frac{a}{\lambda} \cdot \cos \psi\right)}{\frac{\pi}{\lambda} \cos \psi}=p \cdot a \cdot \frac{\sin \left(\pi \frac{a}{\lambda} \cos \psi\right)}{\pi \frac{\alpha}{\lambda} \cos \psi} \tag{4}\\
A_{\mathrm{s}}=K \cdot \frac{\sin u}{u} \\
\\
\\
\\
\end{gather*}
$$

Die Funktion $\frac{A_{s}}{K}=\frac{\sin u}{\mathrm{u}}$ zeigt Bild 13. Da u sich zwischen $-\pi \frac{a}{\lambda}$ und $+\pi \frac{a}{\lambda}$ bewegen kann, sieht man, daB die Richtcharakteristik um so mehr Nebenzipfel enthält, je größer $\frac{a}{\lambda}$ wird, bzw. je größer die Antennengröße a bei vorgegebener Wellenlänge λ ist.

Die Hauptstrahlungsrichtung ergibt sich für

$$
\mathrm{u}=\pi \frac{a}{\lambda} \cos \psi=0
$$

woraus $\psi=90^{\circ}$ folgt.
Der Winkel, bei dem die Strahlungsdichte auf $\frac{1}{\sqrt{2}}$ abgesunken ist, ergibt sich aus

$$
\mathrm{u}_{0}=\frac{\pi a}{\lambda} \cos \psi_{0} \approx 0,44 \pi
$$

und daraus

$$
\begin{equation*}
\cos \psi_{o}=\frac{0.44 \lambda}{a} \tag{5}
\end{equation*}
$$

Mit steigendem a, d. h. mit einer großen Antenne nähert sich ψ_{0} immer mehr dem Wert $\frac{\pi}{2}$. Das bedeutet, daB der Offnungswinkel der Antenne immer kleiner und die Bündelung immer besser wird. $\psi=\frac{\pi}{2}$ ist die Hauptstrahlungsrichtung.

Der Offnungswinkel ψ H der Antenne ergibt sich aus

$$
\psi_{\mathrm{H}}=2\left(\frac{\pi}{2}-\psi_{0}\right)
$$

Setzt man daraus y_{0} in Gl. 5 ein, so wird

$$
\cos \left(\frac{\pi}{2}-\frac{\psi_{\mathrm{H}}}{2}\right)=\sin \frac{\psi_{\mathrm{H}}}{2}=\frac{0,44 \lambda}{a}
$$

Bild 14b. Kurven zur grafischen Bestimmung dieses Richtdiagramms. Beispiel: für $y^{\prime}=60$ erhalt man aus dem unteren Diagramm $u=\pi \cdot \frac{a}{\lambda}$. $\cos \psi=\pi \cdot 3 \cdot \cos 60^{\circ}=1,5 \pi$. Aus dem oberen Diagramm: $A_{s} / K=\frac{\sin u}{u}$ entnimmt man für $u-1,5 \pi: A_{s} / K=0,2$. Dieser Wert ist in Bild 14 für $y^{\prime}=60^{\circ}$ eingetragen
und für große a:

$$
\sin \frac{\psi_{\text {H }}}{2} \approx \frac{\psi_{\text {H }}}{2}=\frac{0,44 \lambda}{a}
$$

Damit läßt sich ψ_{H} sofort angeben.
Die Auswertung der G1. 4 für $\frac{a}{\lambda}=3$ zeigt Bild 14 .
Obwohl die Nebenzipfel bei einer gleichmäßigen Strombelegung der Antenne nicht sehr störend sind (die Amplitude der Feldstärke ist im 1. Nebenzipfel bereits auf etwa 20% abgesunken), möchte man in manchen Anwendungsgebieten eine bessere Nebenzipfelfreiheit. Diese läßt sich durch eine Abnahme der Ströme zu den Rändern der Antenne hin erreichen.

2.1.2 Cos-förmige Strombelegung

Die Antenne sieht genauso aus wie in Bild 11 gezeigt, jedoch sollen die Amplituden der Ströme zu den Rändern hin cos-förmig abnehmen. Die Richtcharakteristik ergibt sich unmittelbar, wenn man in GI. 3 die Konstante p durch $p \cdot \cos \frac{\pi x}{a}$ ersetzt. Somit wird

$$
\begin{equation*}
A_{s}=\mathbf{p} \int_{-a / 2}^{+a / 2} \cos \frac{\pi x}{a} \cdot \mathbf{e}^{j \frac{2 a x}{\lambda} \cos \psi} \mathbf{d x} \tag{6}
\end{equation*}
$$

Darin ist p jetzt die Amplitude des Stromes bei $x=0$.
Das Integral in Gl. 6 ist rekursiv und läßt sich leicht lösen. Es gilt allgemein:

$$
\int \cos m x e^{n x} d x=\frac{1}{n^{2}+m^{2}} e^{n x}[n \cdot \cos m x+m \cdot \sin m x]
$$

Damit wird aus Gl. 6^{3}):

$$
\begin{gather*}
A_{8}=\left|A_{8}\right|=p a \frac{\pi}{2} \cdot \frac{\cos \left(\frac{\pi a}{\lambda} \cos \psi\right)}{\left(\frac{\pi}{2}\right)^{2}-\left(\frac{\pi \cdot a}{\lambda} \cos \psi\right)^{2}} \\
A_{\mathrm{s}}=K \cdot \frac{\left(\frac{\pi}{2}\right)^{2} \cos u}{\left(\frac{\pi}{2}\right)^{2}-u^{2}} \tag{7}
\end{gather*}
$$

mit $\mathbf{u}=\frac{\pi a}{\lambda} \cos \psi$ und $K=\mathrm{p} \frac{2 a}{\pi}$
Die Konstante K ist jetzt so gewählt, daß für $u=0$ $\frac{A_{s}}{K}=1$ wird. Den Verlauf von $\frac{A_{s}}{K}$ zeigt Bild 15. Man sieht daB die Nebenzipfel tatsächlich viel kleiner sind, als sie in Bild 13 waren.

Man bezeichnet dieses Verfahren zur Verringerung der Nebenzipfel als "Prinzip der unterdrückten Randstrahlung". Es findet auch Anwendung bei den schon früher besprochenen Dipolgruppen.

Die Hauptstrahlungsrichtung tritt für

$$
\mathrm{u}=0 \text { bzw. } \psi=90^{\circ}
$$

auf.
Die Nullstellen der Strahlung liegen bei $u=(2 n+1) \frac{\pi}{2}$ mit $n=1,2 \ldots$ wobei es von $\frac{a}{\lambda}$ abhängt, welchen Höchstwert die Laufzahl n annehmen kann. Für $\frac{a}{\lambda}<\frac{3}{2}$ treten überhaupt keine Nullstellen und keine Nebenzipfel auf.

Aus Bild 15 ist weiter zu ersehen, daB die Halbwertsbreite größer ist als bei der Antenne mit konstanter Strombelegung. Dies ist eine typische Erscheinung. Die Nebenzipfelfreiheit wird besser auf Kosten der Richtwirkung.

[^2]
2.2 Flächenstrahler mit Strömen konstanter Amplitude und verschiedener Phase

Wir wollen uns hier auf den einfachsten Fall beschränken, und zwar soll sich die Phase proportional zu x verändern, wenn die Antenne so steht, wie in Bild 11. Zu unterscheiden sind wieder zwei Phasenwinkel δ_{3} und δ_{p}, wobei δ_{3} der Winkel ist, der sich durch einen Wegunterschied ergibt, während δ_{p} von der Speisung der Antenne abhängt.
δ_{s} hatten wir bereits in Abschnitt 2.1.1 berechnet. Es war

$$
\delta_{\mathrm{s}}=2 \pi \frac{x}{\lambda} \cos \psi
$$

Der Winkel δ_{p} ergibt sich voraussetzungsgemäß zu

$$
\delta_{\mathrm{p}}=\Delta \cdot \mathrm{x}
$$

wobei Δ ein Proportionalitätsfaktor ist (Dimension: Grad pro Längeneinheit).

Die Gesamtphase δ ergibt sich aus

$$
\begin{equation*}
\delta=\delta_{\mathrm{s}}+\delta_{\mathrm{p}}=\mathrm{x} \cdot\left(\frac{2 \pi}{\lambda} \cos \psi+\Delta\right) \tag{7}
\end{equation*}
$$

Die Richtcharakteristik ergibt sich unmittelbar mit Gl. 3, wenn man dort δ_{s} durch δ aus Gl. (7) ersetzt.

Es wird

$$
\begin{aligned}
& A_{5}=p \int_{-\frac{a}{2}}^{+\frac{a}{2}} e^{j 2 \pi \times\left(\frac{\cos \psi}{\lambda}+\frac{\Delta}{2 \pi}\right)} \cdot \mathrm{dx} \\
& =\mathrm{p} \cdot \frac{\sin \left[\left(\frac{1}{\lambda} \cos \psi+\frac{\Delta}{2 \pi}\right) a \pi\right]}{\pi\left(\frac{1}{\lambda} \cos \psi+\frac{\Delta}{2 \pi}\right)}
\end{aligned}
$$

$$
\begin{gather*}
\text { bzw. } A_{s}=p \cdot a \frac{\sin \left[a \pi\left(\frac{1}{\lambda} \cos \psi+\frac{\Delta}{2 \pi}\right)\right]}{a \pi\left(\frac{1}{\lambda} \cos \psi+\frac{\Delta}{2 \pi}\right)} \tag{8}\\
\frac{A_{S}}{K}=\frac{\sin u}{u}
\end{gather*}
$$

mit $K=p \cdot a$ und $u=a \pi\left(\frac{1}{\lambda} \cos \psi+\frac{\Delta}{2 \pi}\right)$
Die Auswertung der Gl. 8 für $\frac{a}{\lambda}=3$ und $\Delta=\frac{\pi}{a}$ erfolgt grafisch (Bild 16). Hierbei ist Δ so gewählt, daß die Phasendrehung an den Antennenrändern gerade $\pm \pi / 2$ wird. Das Ergebnis zeigt Bild 17.

Die Hauptstrahlungsrichtung liegt bei $u=0$. Daraus ergibt sich

$$
\frac{1}{\lambda} \cos \psi+\frac{\Delta}{2 \pi}=0
$$

bzw.

$$
\cos \psi=-\frac{\lambda}{2 \pi} \cdot \Delta
$$

Für $\Delta=0$, d. h. konstante Phase auf der ganzen Antenne, liegt die Hauptstrahlungsrichtung bei

$$
\psi= \pm \frac{\pi}{2} \quad \text { (Querstrahler) }
$$

wie bereits in Abschnitt 2.1.1 gezeigt.
Für endliche Δ weichen die Hauptstrahlungsrichtungen von $\pm \frac{\pi}{2}$ ab und zwar beide zur $-x$ - Achse hin. In der Praxis strebt man an, daB die beiden Hauptkeulen zusammenfallen. Dies ist der Fall, wenn
bzw.

$$
\begin{gathered}
\frac{\lambda}{2 \pi} \cdot \Delta=1 \\
\Delta=\frac{2 \pi}{\lambda}
\end{gathered}
$$

wird. Aus dem Querstrahler ist jetzt ein Längsstrahler geworden. Die Richtcharakteristik für $\frac{a}{\lambda}=3$ zeigt Bild 18 .

Bild 18b. Kurven zur grafischen Bestimmung des Richtdiagramms von Bild 18

Anhang

$\int \cos m x \cdot e^{n x} d x$ wird nach der Methode der ,teilweisen Integration" berechnet. Danach gilt:

$$
\int u^{\prime} \cdot v \cdot d x=u \cdot v-\int u \cdot v^{\prime} d x
$$

Mit $u^{\prime}=e^{n x}$, also $u=\frac{1}{n} e^{n x}$ und

$$
v=\cos m x, \text { also } v^{\prime}=-m \cdot \sin m x
$$

ergibt sich:
$\int \cos m x \cdot e^{n x} d x=\frac{1}{n} \cos m x e^{n x}+\frac{m}{n} \int \sin m x e^{n x} d x$

Für das $\int \sin m x e^{n x} d x$ wird die gleiche Rechenoperation wiederholt mit

$$
\begin{aligned}
& u^{\prime}=e^{n x}, \text { also } u=\frac{1}{n} \cdot e^{n x} \text { und } \\
& v=\sin m x, \text { also } v^{\prime}=m \cdot \cos m x
\end{aligned}
$$

$\int \sin m x \cdot e^{n x} d x=\frac{1}{n} \sin m x \cdot e^{n x}-\frac{m}{n} \int \cos m x e^{n x} d x$.

Eingesetzt in Gl. 21, ergibt:
$\int \cos m x \cdot e^{n x} d x=\frac{1}{n} \cos m x \cdot e^{n x}+\frac{m}{n}\left[\frac{1}{n} \cdot \sin m x \cdot e^{n x}-\right.$

$$
\left.-\frac{m}{n} \int \cos m x \cdot e^{n x} d x\right]
$$

$\int \cos m x \cdot e^{n x} d x=\frac{1}{1+\frac{m^{2}}{n^{2}}}\left[\frac{1}{n} \cos m x \cdot e^{n x}+\frac{m}{n^{2}} \cdot \sin m x \cdot e^{n x}\right]$

$$
=\frac{1}{n^{2}+m^{2}} \cdot e^{n x}[n \cdot \cos m x+m \cdot \sin m x]
$$

Dabei ist: $m=\frac{\pi}{a}$ und $n=j \cdot \frac{2 \pi}{\lambda} \cdot \cos \psi$

Dann wird Gl. 6 wie folgt geschrieben:

$$
\begin{aligned}
& A_{8}=p \cdot \frac{1}{m^{2}+n^{2}}\left\{e^{n \cdot \frac{a}{2}\left(n \cdot \cos \frac{\pi}{a} \cdot \frac{a}{2}+m \cdot \sin \frac{\pi}{a} \cdot \frac{a}{2}\right)} \begin{array}{l}
\left.-e^{-n \cdot \frac{a}{2}}\left(n \cdot \cos -\frac{\pi}{a} \cdot \frac{a}{2}\right)+m \cdot \sin \left(-\frac{\pi}{a} \cdot \frac{a}{2}\right)\right\} \\
=p \frac{1}{m^{2}+n^{2}}\left\{e^{n \cdot \frac{a}{2}}(0+m \cdot 1)-e^{-n \cdot \frac{a}{2}}(0+m \cdot[-1])\right\} \\
=p \frac{1}{m^{2}+n^{2}} \cdot m\left\{e^{n \cdot \frac{a}{2}+e^{-n} \frac{a}{2}}\right\} \\
A_{8}=p m \cdot \frac{1}{m^{2}+n^{2}} \cdot\left\{e^{j \frac{\pi a}{\lambda} \cos \psi}+e^{-i \frac{\pi a}{\lambda} \cos v}\right\}
\end{array} .\right.
\end{aligned}
$$

s. a. FtA Mth 21 Abschn. 3
$=p m \cdot \frac{1}{m^{2}+n^{2}} \cdot\left\{\cos \frac{\pi a}{\lambda} \cos \psi+j \sin \left(\frac{\pi a}{\lambda} \cos \psi\right)+\right.$

$$
\left.\cos \left(\frac{\pi a}{\lambda} \cdot \cos \psi\right)-j \sin \left(\frac{\pi a}{\lambda} \cdot \cos \psi\right)\right\}
$$

$$
A_{\mathrm{s}}=2 \mathrm{pm} \cdot \frac{1}{\mathrm{~m}^{2}+\mathrm{n}^{2}} \cdot \cos \left(\frac{\pi a}{\lambda} \cdot \cos \psi\right)
$$

$$
=2 \cdot p \cdot \frac{\pi}{a} \cdot \frac{1}{\left(\frac{\pi}{a}\right)^{2}-\left(\frac{2 \pi}{2} \cdot \cos \psi\right)^{2}} \cdot \cos \left(\frac{\pi \alpha}{\lambda} \cdot \cos \psi\right)
$$

$$
A_{\mathrm{s}}=p \cdot a \cdot \frac{\pi}{2} \cdot \frac{\cos \left(\frac{\pi a}{\lambda} \cdot \cos \psi\right)}{\left.\left(\frac{\pi}{2}\right)^{2}-\left(\frac{\pi \cdot a}{\lambda}\right) \cdot \cos \psi\right)^{2}}
$$

[^0]: ${ }^{1}$) δ_{4} Phasenunterschied, bedingt durch Wegunterschied.
 δ_{1}, Phasenunterschied in der Speisung der Einzeldipole, s. a. FtA At 11, Abschnitt 2.

[^1]: ${ }^{2}$) Um das Feld einer Dipolgruppe in einem Aufpunkt P zu berechnen, ist die Summe der Felder der Einzeldipole - unter Beruigksichtigung der jeweiligen Amplitude und Phase - zu bilden. Will man nur die Summenamplitude erhalten, so kann dem Feldvektor eines beliebigen Dipols aus der Dipolgruppe die Phase 0 zugeordnet werden: die Feldvektoren der anderen Dipole haben dann relativ zu diesem Bezugsvektor die Phase δ, wobei p eine Laufzahl ist. Die Phase δ_{p}, wird mathematisch durch den Faktor $e^{j \delta_{y}}$ berüdsichtigt, so daB sich als Summenamplitude ergibt

 $$
 A \mid=\sum_{v=1}^{n} A_{v} e^{j \delta_{v}}
 $$

 hlerbei gibt n die Anzahl der Einzeldipole an, A_{p} ist die Feldamplitude
 des r-ten Einzeldipols und δ, seine Phase. Diese Summe geht unmittelbar in GI. 3 über, wenn man Flächenstrahler betrachtet.

[^2]: ${ }^{3)}$ Siehe Anhang.

